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Abstract. We study a general class of nonlinear mean field Fokker-Planck equations in relation with an
effective generalized thermodynamical (E.G.T.) formalism. We show that these equations describe several
physical systems such as: chemotaxis of bacterial populations, Bose-Einstein condensation in the canoni-
cal ensemble, porous media, generalized Cahn-Hilliard equations, Kuramoto model, BMF model, Burgers
equation, Smoluchowski-Poisson system for self-gravitating Brownian particles, Debye-Hückel theory of
electrolytes, two-dimensional turbulence... In particular, we show that nonlinear mean field Fokker-Planck
equations can provide generalized Keller-Segel models for the chemotaxis of biological populations. As an
example, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and
exclusion principle (volume filling). Therefore, the notion of generalized thermodynamics can have appli-
cations for concrete physical systems. We also consider nonlinear mean field Fokker-Planck equations in
phase space and show the passage from the generalized Kramers equation to the generalized Smoluchowski
equation in a strong friction limit. Our formalism is simple and illustrated by several explicit examples
corresponding to Boltzmann, Tsallis, Fermi-Dirac and Bose-Einstein entropies among others.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems – 89.75.-k Complex systems – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion

1 Introduction

The study of Fokker-Planck equations (Fokker (1914) [1],
Planck (1917) [2]) is of considerable interest in physics
since the pioneering work of Einstein (1905) [3] on the
Brownian motion. The simplest Fokker-Planck equation
is the Smoluchowski (1915) [4] equation. This is a drift-
diffusion equation describing the diffusion of particles
in physical space in the presence of an external po-
tential (e.g. the sedimentation of colloids in a gravita-
tional field). A more general Fokker-Planck equation is
the Kramers (1940) [5] equation, previously introduced
by Klein (1921) [6], which takes into account inertial ef-
fects and describes the diffusion of particles in phase space
when they experience a friction force. The Smoluchowski
equation is recovered from the Kramers equation in a
strong friction limit where inertial effects are negligible. In
this sense, the Smoluchowski equation describes an over-
damped evolution. These Fokker-Planck equations [7] are
consistent with usual thermodynamics in the canonical en-
semble. They monotonically decrease the Boltzmann free
energy (H-theorem) and relax towards the equilibrium
Boltzmann distribution.
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Recently, several researchers have tried to extend the
usual concepts of thermodynamics and kinetic theory in
order to describe complex systems that are character-
ized by non-Boltzmannian distributions. In that respect,
some generalized forms of entropic functionals1 have been
introduced. One of the most popular “generalized en-
tropy” is the Tsallis (1988) [9] entropy, but other entropies
have been presented by Abe (1997) [10], Borges & Roditi
(1998) [11], Kaniadakis (2001) [12], Naudts (2004) [13],
and Kaniadakis et al. (2005) [14]. It was later realized
that these entropic functionals are special cases of the
one-parameter family of entropies introduced earlier by
Harvda & Charvat (1967) [15] or of the two-parameters
family of entropies introduced by Mittal (1975) [16] and
Sharma & Taneja (1975) [17]. Other famous forms of en-

1 We recall that the Boltzmann entropy can be obtained
from a combinatorial analysis assuming that all the accessi-
ble microstates are equiprobable. This is the basic postulate
of statistical mechanics. Non-standard entropies can be rele-
vant for complex systems where this postulate breaks down,
i.e. when the accessible microstates are not equiprobable. This
happens when the system prefers some regions of phase space
better than others or when the particles are subjected to ex-
clusion/inclusion principles or fine-grained constraints [8].
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tropies have been presented by Reyni (1970) [18] and
Sharma & Mittal (1975) [19]. We refer to Kaniadakis &
Lissia [20] for a very interesting discussion of these his-
torical aspects, starting from the early works of Euler in
1779.

Following these developments, some researchers have
tried to develop out-of-equilibrium theories associated
to a generalized thermodynamical framework. In par-
ticular, it has been first shown by Plastino & Plastino
(1995) [21] that the Tsallis q-distributions are the steady
states of a nonlinear Fokker-Planck equation taking into
account anomalous diffusion. This type of equations had
been previously considered by mathematicians to describe
porous media [22]. The seminal work of Plastino & Plas-
tino [21] has been further developed by Tsallis & Bukman
(1996) [23], Stariolo (1997) [24], Borland (1998) [25] and
Nobre et al. (2004) [26] among others. On the other hand,
Kaniadakis & Quarati (1994) [27] have introduced nonlin-
ear Fokker-Planck equations whose steady states are the
Fermi-Dirac2 and Bose-Einstein statistics. These kinetic
equations take into account an exclusion (fermions) or in-
clusion (bosons) principle leading to quantum-like statis-
tics at equilibrium. The case of intermediate statistics,
interpolating between fermions and bosons, has also been
considered in [27]. Recently, the bosonic Kramers equa-
tion has been studied in [30] and was shown to reproduce
the phenomenology of the Bose-Einstein condensation in
the canonical ensemble.

The above-mentioned nonlinear Fokker-Planck (NFP)
equations are associated with special forms of entropic
functionals (Tsallis, Fermi-Dirac, Bose-Einstein). More re-
cently, Martinez et al. (1998) [31], Kaniadakis (2001) [12],
Frank (2002) [32] and Chavanis (2003) [33] have studied
generalized forms of NFP equations associated with an al-
most arbitrary entropic functional. They can be viewed as
generalized Kramers and Smoluchowski equations where
the coefficients of diffusion, friction and drift explicitly
depend on the local density of particles. Physically, this
can take into account microscopic constraints (exclusion
volume effects, steric hindrance, non-extensive effects...)
that modify the dynamics of the particles at small scales
and lead to non-standard equilibrium distributions3. Mar-
tinez et al. [31] determined the NFP equation in order

2 A generalized Fokker-Planck equation leading to the Fermi-
Dirac statistics has also been introduced by Chavanis et al.
(1996) [28] in the context of the violent relaxation of collision-
less stellar systems described by the Vlasov equation. This is
based on the Lynden-Bell’s form of entropy (1968) [29] which
becomes similar to the Fermi-Dirac entropy in the two-levels
approximation of the theory.

3 Generalized Kramers and Smoluchowski equations describe
dissipative systems where the temperature is fixed instead of
the energy. They are therefore associated with the canonical
ensemble. The appropriate thermodynamical potential is the
free energy F = E − TS which decreases monotonically with
time at fixed mass. Generalized Boltzmann and Landau equa-
tions describing conservative systems where the energy is fixed
have been introduced by Kaniadakis (2001) [12] and Chavanis
(2004) [34]. They are associated with the microcanonical en-
semble. The proper thermodynamical potential is the entropy

to recover, as a steady state, the equilibrium state pro-
duced by minimizing a generalized form of free energy at
fixed mass. Kaniadakis [12] obtained the NFP equation
from the Master equation (see also Curado & Nobre [35])
by allowing the transition probabilities to depend on the
concentration of particles in the initial and arrival states.
Frank [32] derived the NFP equation from a generalized
free energy functional by using the linear thermodynamics
of Onsager. Chavanis [33] obtained the NFP equation by
using a form of Maximum Entropy Production Principle
(MEPP). This corresponds to a variational version of the
linear thermodynamics of Onsager. We refer to the book
of Frank [36] for a first survey on nonlinear Fokker-Planck
equations.

Another topic of active research in statistical physics
concerns the dynamics and thermodynamics of systems
with long-range interactions [37]. Several Hamiltonian
systems with long-range interactions have been studied
in the microcanonical ensemble such as self-gravitating
systems, two-dimensional vortices, the HMF model, the
free-electron laser, etc. For such systems the mean field
approximation provides a very good description of the sys-
tem and becomes exact in a proper thermodynamic limit
N → +∞. The microcanonical ensemble is the correct de-
scription of isolated systems evolving at fixed energy. On
the other hand, some authors have introduced a canon-
ical version of these models so as to treat systems that
are dissipative. This leads to the notion of Brownian sys-
tems with long-range interactions. Their dynamics is de-
scribed by mean field Fokker-Planck equations where the
temperature is fixed (instead of the energy). These mean
field Fokker-Planck equations were introduced early by
Kuramoto (1984) [38] to describe the synchronization of
globally coupled nonlinear oscillators and more recently
by Marzel & Aslangul (2001) [39], Chavanis (2006) [40]
and Frank [36] in a more general context. Some specific
studies have been made for self-gravitating Brownian par-
ticles [41,42] and for the BMF model [43] which is the
canonical version of the HMF model [44].

In view of the importance of these two topics: general-
ized thermodynamics and long-range interactions, we have
introduced in [33] a class of nonlinear mean field Fokker-
Planck equations (see Eq. (81) of [33]) that incorporate
both a generalized free energy functional and a long-range
potential of interaction. As an illustration, we studied with
C. Sire a model of self-gravitating Langevin particles [45]
(see also [46]) that combines self-gravity (long-range in-
teractions) and anomalous diffusion (generalized thermo-
dynamics) related to the Tsallis entropy and to the poly-
tropic equation of state. In other words, this model couples
the NFP equation introduced by Plastino & Plastino [21]
to the gravitational Poisson equation. Unfortunately, this
model of self-gravitating Langevin particles has no clear
application in astrophysics (because self-gravitating sys-
tems are generally not overdamped and not dissipative)
and was introduced essentially as an interesting dynami-
cal model with rich mathematical properties. However, it

S which increases monotonically with time at fixed mass and
energy.
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was noted in [45] that this model could have applications
in unexpected area, like in the chemotaxis of bacterial
populations...

The name chemotaxis refers to the motion of organ-
isms induced by chemical signals [47]. In some cases, the
biological organisms (bacteria, amoebae, endothelial cells,
ants...) secrete a substance (pheromone, smell, food, ...)
that has an attractive effect on the organisms them-
selves. Therefore, in addition to their diffusive motion,
they move preferentially along the gradient of concen-
tration of the chemical they secrete (chemotactic flux).
When attraction prevails over diffusion, the chemotaxis
can trigger a self-accelerating process until a point at
which aggregation takes place. This is the case for the
slime mold Dictyostelium discoideum and for the bacteria
Escherichia coli. This is referred to as chemotactic col-
lapse. A model of slime mold aggregation has been intro-
duced by Patlak (1953) [48] and Keller & Segel (1971) [49]
in the form of two coupled differential equations. The first
equation is a drift-diffusion equation describing the evo-
lution of the concentration of bacteria and the second
equation is a diffusion equation with terms of source and
degradation describing the evolution of the concentration
of the chemical. In the simplest model, the diffusion co-
efficient D and the mobility χ of the bacteria are con-
stant. This forms the standard Keller-Segel model. How-
ever, the original Keller-Segel model allows these coeffi-
cients to depend on the concentration of the bacteria and
of the chemical. The case where these coefficients depend
on the concentration of the chemical c(r, t), but not on
the concentration of bacteria ρ(r, t), has been considered
by Othmer & Stevens [50]. This leads to ordinary mean
field Fokker-Planck equations (with respect to ρ(r, t)) with
space and time dependent coefficients. On the other hand,
if we assume that the diffusion coefficient and the mobil-
ity of the bacteria depend on their concentration ρ(r, t),
but not on the concentration c(r, t) of the secreted chem-
ical, the original Keller-Segel model takes the form of a
generalized mean field Fokker-Planck equation. Therefore,
the Keller-Segel model represents a fundamental exam-
ple of nonlinear mean field Fokker-Planck equation with
physical applications in biology, thereby justifying a notion
of generalized thermodynamics. The analogy between the
Keller-Segel model and NFP equations was first pointed
out in [33] and further developed in subsequent papers
(see, e.g., [51]). This analogy makes possible to interpret
results of chemotaxis in terms of nonlinear Fokker-Planck
equations and generalized thermodynamics, which has not
been considered so far by applied mathematicians work-
ing on this domain [52]. It thus allows to make a bridge
between two different communities. In this analogy, the
model of self-gravitating Langevin particles introduced by
Chavanis & Sire [45] also provides a generalized Keller-
Segel model of chemotaxis taking into account anomalous
diffusion (the application of this model to chemotaxis has
been emphasized in [53]). More generally, we can use the
numerous results accumulated in the context of general-
ized thermodynamics to propose new forms of generalized
Keller-Segel models with potential applications in biology.

The aim of this paper is to develop a simple and rich
formalism that allows to deal with nonlinear mean field
Fokker-Planck equations. We shall illustrate this formal-
ism on several examples and show the inter-connections
between different topics. The paper is organized as fol-
lows. In Section 2, we consider NFP equations in physical
space. This corresponds to overdamped models where in-
ertial effects are neglected. We review and complete the
basic properties of these equations in relation with an ef-
fective generalized thermodynamical (E.G.T.) formalism.
In Section 2.1, we show that they can be obtained from
generalized Langevin equations. In Section 2.5, we show
that they admit anH-theorem (in the canonical ensemble)
for a generalized free energy. We stress that the Legen-
dre structure of the free energy and the Einstein relation
are preserved in this generalized thermodynamical frame-
work. In Section 2.6, we determine the steady states of
these nonlinear mean field Fokker-Planck equations and
show that they are solutions of an integrodifferential equa-
tion. In Section 2.7 (and in Appendix B), we show that a
steady state of a nonlinear mean field Fokker-Planck equa-
tion is linearly dynamically stable if and only if (iff) it is a
(local) minimum of the free energy at fixed mass. In Sec-
tion 2.9, we show that a NFP equation in physical space
with a constant mobility and a density-dependent diffu-
sion coefficient can be written in the form of a generalized
Smoluchowski equation incorporating a barotropic equa-
tion of state. In Sections 2.10 and 2.11, we show the cor-
respondence between the phenomenological derivations of
the NFP equations given by Frank [32] and Chavanis [33]
and the kinetic derivation given by Kaniadakis [12]. In
Section 3, we present several explicit examples of NFP
equations and mention their potential applications to the
problem of chemotaxis (see Sect. 2.4). In particular, we
introduce a new model of chemotaxis that incorporates
both effects of anomalous diffusion and exclusion prin-
ciple (volume filling). The corresponding generalized en-
tropy is expressed in the form of integrals that can be
explicited in particular cases. In Section 4, we consider
NFP equations in phase space taking into account iner-
tial effects. In Sections 4.1–4.7, we list their main proper-
ties. In Section 4.8, we consider the strong friction limit
and derive the generalized Smoluchowski equation from
the generalized Kramers equation. We use a method of
moments that is simpler than the Chapman-Enskog ex-
pansion presented in [54]. In Section 5, we consider ex-
plicit examples corresponding to the Boltzmann, Tsallis
and Fermi-Dirac entropies. The Appendices contain im-
portant results that complete the basic properties of the
NFP equations discussed in the text. In Appendix A, we
show that a generalized isotropic BGK operator has prop-
erties similar to those possessed by a nonlinear Kramers
operator. In Appendix B, we establish a simple relation
showing the equivalence between linear dynamical stabil-
ity (exponential damping of the perturbation) and gener-
alized thermodynamical stability (minimum of free energy
at fixed mass). In Appendix C, we study the stability of a
spatially homogeneous solution of the nonlinear mean field
Fokker-Planck equation and evidence a critical point. In
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Appendices D and E, we show that a distribution function
f in phase space is a minimum of the free energy F [f ] at
fixed mass iff the corresponding distribution ρ in physical
space is a minimum of the corresponding free energy F [ρ]
at fixed mass. This implies that a distribution function f
in phase space is a stable steady state of the generalized
Kramers equation iff the corresponding distribution ρ in
physical space is a stable steady state of the correspond-
ing generalized Smoluchowski equation. In Appendix F,
we extend to d dimensions the Eddington formula that al-
lows to obtain the distribution function f = f(ε) in phase
space from the knowledge of the barotropic equation of
state p = p(ρ) in physical space. In Appendix G, we de-
rive the H-theorems associated with the NFP equations
and in Appendix H we derive the polytropic equation of
state associated with the Tsallis statistics.

2 Nonlinear mean field Fokker-Planck
equations in physical space

We first describe nonlinear mean field Fokker-Planck equa-
tions in physical space where the inertia of the particles
is neglected. They can be viewed as models describing an
overdamped dynamics.

2.1 Generalized Langevin equations

We consider a system of N particles whose individual dy-
namics is described by the stochastic Ito-Langevin equa-
tions

dri
dt

= −χ(ρi)∇Φi +
√

2D(ρi)Ri(t), (1)

where Ri(t) is a white noise satisfying 〈Ri(t)〉 = 0 and
〈Ri,α(t)Rj,β(t′)〉 = δijδα,βδ(t − t′) where i = 1, ..., N la-
bel the particles and α = 1, ..., d label the coordinates of
space. We have noted ρi = ρ(ri(t), t) and Φi = Φ(ri(t), t).
In ordinary models, the mobility χ and the diffusion co-
efficient D are constant. In that case, the statistical equi-
librium state is the Boltzmann distribution ρ ∼ e−Φ/T
where the temperature T = 1/β is given by the Einstein
relation T = D/χ. In the present study, we shall consider
more general situations and allow the mobility χ(ρ) and
the diffusion coefficient D(ρ) to depend on the local con-
centration of particles ρ(r, t) = 〈∑N

i=1 δ(r − ri(t))〉. This
is an heuristic approach to take into account microscopic
constraints that affect the dynamics of particles at small
scales and lead to non-Boltzmannian equilibrium distri-
butions. Indeed, it is not surprising that the mobility or
the diffusive properties of a particle depend on its envi-
ronment. For example, in a dense medium, its motion can
be hampered by the presence of the other particles so that
its mobility is reduced.

On the other hand, in ordinary models, the particles
move in a fixed external potential Φext(r). In the present
study, we want to be more general and take into account

the possibility that the potential Φ(r, t) is created self-
consistently by the particles themselves. In this paper, we
shall neglect statistical correlations and use a mean field
description (for more general models taking into account
statistical correlations see, e.g., [40,55]). Therefore, we as-
sume that the potential is given by a relation of the form

Φ(r, t) =
∫
ρ(r′, t)u(|r− r′|)dr′, (2)

where u(|r − r′|) is a binary potential of interaction and
ρ(r, t) is the smooth distribution of particles. In gen-
eral, the mean field approximation gives a very good
description of systems with weak long-range binary in-
teractions and it becomes exact in a proper thermody-
namic limit N → +∞ [40]. In equation (2), the poten-
tial is expressed as a convolution product: Φ = u ∗ ρ. Of
course, the potential can be due to the combined effect
of the self-interaction and an external field, in which case
Φ = Φext + u ∗ ρ. We shall also consider the case where it
is determined by an equation of the form

ε
∂Φ

∂t
= ∆Φ− k2Φ− λρ, (3)

where ε and λ are positive constants. For ε = 0, equa-
tion (3) becomes the screened Poisson equation

∆Φ− k2Φ = λρ. (4)

Therefore, we can identify k−1 as the screening length. If
we assume furthermore that k = 0, we get the Poisson
equation

∆Φ = λρ. (5)

These last two equations can be put in the form of equa-
tion (2). Note also that, in the stationary state, equa-
tion (3) reduces to equation (4).

2.2 Drift-diffusion equations

For the stochastic process (1), the evolution of the smooth
density of particles ρ(r, t) is governed by the nonlinear
mean field Fokker-Planck equation [33,40]:

∂ρ

∂t
= ∇ · [∇(D(ρ)ρ) + χ(ρ)ρ∇Φ] , (6)

coupled to equation (2) or (3). Let us introduce the nota-
tions

Dh(ρ) =
d

dρ
(ρD(ρ)), χg(ρ) = ρχ(ρ), (7)

where D and χ are positive constants and h(ρ) and g(ρ)
are positive functions. These notations are chosen such
that the usual stochastic equations with constant diffusion
D(ρ) = D and constant mobility χ(ρ) = χ are recovered
for h(ρ) = 1 and g(ρ) = ρ. With these notations, the
nonlinear Fokker-Planck equation (6) can be rewritten

∂ρ

∂t
= ∇ · (Dh(ρ)∇ρ+ χg(ρ)∇Φ) . (8)
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It can be put in the conservative form

∂ρ

∂t
= −∇ · J, (9)

where

J = − (Dh(ρ)∇ρ+ χg(ρ)∇Φ) , (10)

is a diffusion current. This structure guarantees the con-
servation of mass M =

∫
ρdr provided that the normal

component of the current at the boundary vanishes.

2.3 Relation to some known models

Known models can be recovered as particular cases of
equation (6). When Φext is an external potential and when
D(ρ) = D and χ(ρ) = χ are constant, we recover the
Smoluchowski equation ∂tρ = ∇ · (D∇ρ + χρ∇Φext) de-
scribing the Brownian motion of colloidal suspensions in
a fixed gravitational field [4]. When ρD(ρ) = Kργ and
Φext = 0, we recover the porous medium equation ∂tρ =
K∆ργ [22], and when Φext �= 0, we recover the nonlin-
ear Fokker-Planck equation ∂tρ = ∇ · (K∇ργ +χρ∇Φext)
introduced by Plastino & Plastino [21] in connection to
the Tsallis statistics [9]. When D(ρ) = D and χ(ρ) = χ
are constant and u = − k

2π cos(θ − θ′) we obtain the
Brownian Mean Field (BMF) model [43], which is the
canonical (fixed T ) version of the microcanonical (fixed
E) Hamiltonian Mean Field (HMF) model [44]. This is
closely related to the Kuramoto model [38] which describes
the synchronization of globally coupled nonlinear oscilla-
tors. When D(ρ) = D and χ(ρ) = χ are constant and
Φ is the gravitational potential satisfying ∆Φ = 4πGρ,
equations (6), (5) become the Smoluchowski-Poisson sys-
tem describing a model of self-gravitating Brownian par-
ticles studied by Chavanis & Sire [41,42,56–59]. When
D(ρ) = D and χ(ρ) = χ are constant and Φ is the
self-consistent electrostatic potential, we recover the equa-
tions introduced by Debye & Hückel [60] in their model of
electrolytes. Models of the form (6)–(4) including a time
dependent temperature β(t) assuring the conservation of
energy have been introduced by Robert & Sommeria [61]
and Chavanis [62] to describe the violent relaxation of
two-dimensional vortices in geophysical and astrophysical
flows. In the Quasi Geostrophic (QG) model, k−1 rep-
resents the Rossby length. Similar equations have been
proposed in [28] to model the violent relaxation of stel-
lar systems. On the other hand, for short range interac-
tions, we can expand the potential in the form Φ(r, t) =
aρ(r, t) + b

2∆ρ(r, t) and equation (6) leads to a general-
ized form of the Cahn-Hilliard equation (see [51,54,55] for
details). As a particular case, for D = 0 and u = aδ
(leading to Φ(r, t) = aρ(r, t)), we get ∂tρ = χa∇(g(ρ)∇ρ)
and for g(ρ) = ρ, we get the porous medium equation
∂tρ = 1

2χa∆ρ
2. Finally, in d = 1, assuming D(ρ) = D,

χ(ρ) = χ and u′ = − 1
2χδ, we get the Burgers equation

∂tρ + ρ∂xρ = D∂xxρ [63]. Therefore, the class of nonlin-
ear mean field Fokker-Planck equations (6)–(2) introduced
in [33] can find physical applications in different areas [8].

2.4 Generalized Keller-Segel model of chemotaxis

In addition to the previous examples, nonlinear mean field
Fokker-Planck equations can find important applications
in the context of chemotaxis [47]. The original Keller-Segel
model [49] describing the chemotaxis of bacterial popula-
tions consists in two coupled differential equations

∂ρ

∂t
= ∇ · (D2∇ρ) −∇ · (D1∇c) , (11)

ε
∂c

∂t
= Dc∆c− k(c)c+ f(c)ρ, (12)

that govern the evolution of the density of bacteria ρ(r, t)
and the evolution of the secreted chemical c(r, t). The bac-
teria diffuse with a diffusion coefficient D2 and they also
move in a direction of a positive gradient of the chemi-
cal (chemotactic drift). The coefficient D1 is a measure of
the strength of the influence of the chemical gradient on
the flow of bacteria. On the other hand, the chemical is
produced by the bacteria with a rate f(c) and is degraded
with a rate k(c). It also diffuses with a diffusion coefficient
Dc. In the general Keller-Segel model, D1 = D1(ρ, c) and
D2 = D2(ρ, c) can both depend on the concentration of
the bacteria and of the chemical. This takes into account
microscopic constraints, like close-packing effects, that can
hinder the movement of bacteria. If we assume that the
quantities only depend on the concentration of bacteria 4

and write D2 = Dh(ρ), D1 = χg(ρ), k(c) = k2, f(c) = λ
and Dc = 1, we obtain

∂ρ

∂t
= ∇ · (Dh(ρ)∇ρ− χg(ρ)∇c) , (13)

ε
∂c

∂t
= ∆c− k2c+ λρ. (14)

These equations are isomorphic to the nonlinear mean
field Fokker-Planck equations (8)–(3) provided that we
make the correspondence Φ(r, t) = −c(r, t): the poten-
tial of interaction is played by the concentration of the
secreted chemical.

It is important to note that the Keller-Segel model is a
mean field model. If we come back to the exact microscopic
equations

dri
dt

= χ∇cd(ri(t), t) +
√

2DRi(t), (15)

ε
∂cd
∂t

= ∆cd − k2cd + λ

N∑

i=1

δ(r − ri(t)), (16)

governing the evolution of each particle (bacteria, cells,
social insects,...), the mean field approximation leading to
the standard Keller-Segel model (13)-(14) with h(ρ) = 1

4 In this paper, we shall restrict ourselves to this situation.
The original Keller-Segel model (11)-(12) where D1 and D2

depend on both ρ(r, t) and c(r, t) does not seem to possess
the nice “thermodynamical” properties of the reduced Keller-
Segel (13)-(14) such as Legendre structure of the free energy
functionals, canonical H-theorem, Einstein relation etc.
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and g(ρ) = ρ amounts to neglecting statistical corre-
lations; see [40,55,59,64–67] for details. Let us first as-
sume that the system is Markovian and possesses no in-
trinsic memory in the sense that cd(r, t) = − ∫

u(|r −
r′|)ρd(r′, t)dr′ where ρd(r, t) =

∑N
i=1 δ(r − ri(t)) is the

exact distribution of particles. When the particles inter-
act via a weak long-range binary potential u(|r − r′|), it
can be shown that the mean field approximation becomes
exact in a proper thermodynamic limit N → +∞ [40]. For
example, in equation (16) these assumptions correspond
to ε = 0 and k 
 1. By contrast, when memory is not zero
and the interaction is short range, corresponding to ε �= 0
and k � 1 in equation (16), the mean field approximation
can lead to wrong results. In the context of chemotaxis, the
differences between mean field and non mean field models
have been discussed by Grima [68] who showed the failure
of the mean field approximation for the prediction of the
width of the aggregate sizes (the disagreement becomes
very severe close to the critical point where we know that
mean field approximation breaks down in general). On the
other hand, the mean field approximation assumes that
the number of particles N → +∞. In stellar systems and
plasmas, for example, this is always the case. However,
for biological systems, the number of interacting bacteria
or cells is frequently less than a few thousands so it may
be relevant to return to a microscopic description of the
bacteria or cells’ movement in terms of N -body stochastic
equations like (15)–(16) as discussed in [67]. In this paper,
however, we shall exclusively consider mean field models.
As we have seen, mean field approximation works well for
Markovian systems (ε = 0) with weak long-range interac-
tions if (i) N → +∞ and (ii) if we are not too close from a
critical point. Mean field approximation breaks down: (i)
for non-Markovian systems (ε �= 0) (ii) close to a critical
point (iii) for small values of N .

2.5 Generalized free energy and H-theorem

When Φext is an external potential, we define the en-
ergy by

E =
∫
ρΦext dr. (17)

When Φ is determined by equation (2), the self-interaction
energy is given by

E =
1
2

∫
ρΦdr. (18)

Finally, when Φ is determined by equation (3), the en-
ergy is

E =
1
2λ

∫ [
(∇Φ)2 + k2Φ2

]
dr +

∫
ρΦdr. (19)

For ε = 0, the expression (19) reduces to equation (18).
On the other hand, we define the temperature by

T =
D

χ
. (20)

Therefore, the Einstein relation is preserved in the gener-
alized thermodynamical framework. We also set β = 1/T .
We introduce the generalized entropic functional

S = −
∫
C(ρ) dr, (21)

where C(ρ) is a convex function (C′′ ≥ 0) defined by

C′′(ρ) =
h(ρ)
g(ρ)

. (22)

Note that the relation (22) defines the function C(ρ) up to
a term of the form Aρ+B. After integration over the do-
main, the first term is proportional to the mass which is a
conserved quantity and the second term is just a constant.
Therefore, these terms play no physical role. However, we
can adapt the values of the constants A and B in order to
obtain convenient expressions of the entropy.

Since the system is dissipative, the energy is not con-
served. What is fixed instead of the energy is the temper-
ature defined by the Einstein relation (20). Since D ∝ T ,
the temperature measures the strength of the stochastic
force in equation (1). This corresponds to a canonical de-
scription where the system is in contact with a heat bath.
Note that the heat bath is completely disconnected from
the long-range potential of interaction; it corresponds to
short-range interactions modelled by the stochastic term
in equation (1). For an isolated system described by the
microcanonical ensemble the proper thermodynamical po-
tential is the entropy. Alternatively, for a dissipative sys-
tem described by the canonical ensemble, the relevant
thermodynamical potential is the free energy. We intro-
duce the generalized free energy

F = E − TS. (23)

The definition of the free energy (Legendre transform) is
preserved in the generalized thermodynamical framework.

When the energy is given by equations (17) or (18), a
straightforward calculation (see Appendix G) shows that

Ḟ = −
∫

1
χg(ρ)

(Dh(ρ)∇ρ+ χg(ρ)∇Φ)2dr. (24)

When the energy is given by equation (19), we obtain

Ḟ = − 1
λε

∫
(∆Φ− k2Φ− λρ)2dr

−
∫

1
χg(ρ)

(Dh(ρ)∇ρ+ χg(ρ)∇Φ)2dr. (25)

Therefore, Ḟ ≤ 0. This forms an H theorem in the canon-
ical ensemble. It is sometimes useful to introduce the
Massieu function

J = S − βE, (26)

which is related to the free energy by J = −βF . Clearly,
we have J̇ ≥ 0. We can now consider particular cases: if
D = 0 (leading to T = 0), we get F = E so that Ė ≤ 0.
If χ = 0 (leading to β = 0), we have J = S so that Ṡ ≥ 0.
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2.6 Stationary solution

The steady state of equation (8) satisfies Ḟ = 0 leading to
J = 0 or explicitly

Dh(ρ)∇ρ+ χg(ρ)∇Φ = 0. (27)

Using equations (20) and (22), we get

C′′(ρ)∇ρ+ β∇Φ = 0, (28)

which can be integrated into

C′(ρ) = −βΦ− α, (29)

where α is a constant of integration. Since C is convex,
this equation can be reversed to give

ρ(r) = F (βΦ(r) + α), (30)

where F (x) = (C′)−1(−x) is a monotonically decreasing
function. Thus, in the steady state, the density is a mono-
tonically decreasing function ρ = ρ(Φ) of the potential.
We have the identity

ρ′(Φ) = − β

C′′(ρ)
. (31)

Substituting equation (2) in (29), we find that the density
profile is determined by an integro-differential equation of
the form

C′(ρ) = −β
∫
ρ(r′)u(|r − r′|)dr′ − α. (32)

More specifically, when the potential is given by equa-
tion (4), we obtain a mean field equation of the form

∆Φ− k2Φ = λF (βΦ + α). (33)

The constant of integration α is determined by the total
mass M (which is a conserved quantity). Finally, we note
that the generalized entropy (21) is related to the distri-
bution (30) by [69]:

C(ρ) = −
∫ ρ

F−1(x)dx. (34)

Equation (30) determines the distribution from the en-
tropy and equation (34) determines the entropy from the
distribution.

2.7 Minimum of free energy

The critical points of free energy at fixed mass are deter-
mined by the variational problem

δF + TαδM = 0, (35)

where α is a Lagrange multiplier. We first consider the
case where Φ is given by equation (2). Therefore, the free
energy that we consider is

F [ρ] =
1
2

∫
ρΦdr + T

∫
C(ρ)dr. (36)

After straightforward calculations, we find that equa-
tion (35) leads to

C′(ρ) = −βΦ− α. (37)

Therefore, comparing with equation (29), we find that a
stationary solution of equation (8) is a critical point of
F at fixed mass. Furthermore, it is shown in Appendix B
that a steady state of equation (8) is linearly dynamically
stable iff it is a minimum (at least local) of F at fixed
mass. This property also results from Lyapunov’s direct
method [36]. Indeed, we have established that

Ḟ ≤ 0, Ḟ = 0 ↔ ∂tρ = 0. (38)

This implies that ρ(r) is linearly dynamically stable iff it
is a (local) minimum of F at fixed mass (maxima or saddle
points of F are dynamically unstable). In this sense, dy-
namical and generalized thermodynamical stability in the
canonical ensemble coincide. Furthermore, if F is bounded
from below5, we can conclude from Lyapunov’s theory
that the system will converge to a stable steady state for
t→ +∞ which is a (local) minimum of F [ρ] at fixed mass.
If several local minima exist, the choice of the final steady
state will depend on a complicated notion of basin of at-
traction.

In conclusion, a steady solution of the nonlinear mean
field Fokker-Planck equation (8) is stable iff it satisfies the
minimization problem:

min
ρ

{F [ρ] | M [ρ] = M}. (39)

Taking the second variations of F and using equation (31),
the condition of stability can be written

δ2F [δρ] = −1
2

{∫
(δρ)2

ρ′(Φ)
dr −

∫
δρδΦdr

}
≥ 0, (40)

for all perturbations δρ that conserve mass. If Φext(r)
is an external potential, the second term in equa-
tion (40) vanishes. Therefore, the second variations of
the free energy are always positive δ2F = −Tδ2S =
(1/2)T

∫
C′′(ρ)(δρ)2 ≥ 0 so that a critical point of F

at fixed mass is necessarily a minimum. If the potential
is given by equation (3), the free energy is a functional
F [ρ, Φ] of the density ρ and potential Φ. The cancellation
of the first order variations of F with respect to δρ and δΦ
yields equations (37) and (4), respectively. The condition
of stability can be written

δ2F [δρ, δΦ] = − 1
2

∫
(δρ)2

ρ′(Φ)
dr +

∫
δρδΦdr

− 1
2λ

∫
(∆δΦ − k2δΦ)δΦdr ≥ 0, (41)

5 There are important cases, like the system of self-
gravitating Brownian particles, where the free energy is not
bounded from below. In that case, the system can either relax
towards a local minimum of F at fixed mass (when it exists)
or collapse to a Dirac peak [56], leading to a divergence of the
free energy F (t) → −∞.



186 The European Physical Journal B

for all perturbations δρ and δΦ that conserve mass. From
now on, we shall only consider the case where the potential
is given by equation (2) since the case of equation (3) can
be treated similarly by following the lines sketched above.

2.8 Particular cases

If we take h(ρ) = 1 and g(ρ) = 1/C′′(ρ), we get

∂ρ

∂t
= ∇ ·

(
D∇ρ+

χ

C′′(ρ)
∇Φ

)
. (42)

In that case, we have a constant diffusion D(ρ) = D and a
variable mobility χ(ρ) = χ/(ρC′′(ρ)). If we take g(ρ) = ρ
and h(ρ) = ρC′′(ρ), we get

∂ρ

∂t
= ∇ · (DρC′′(ρ)∇ρ+ χρ∇Φ) . (43)

In that case, we have a constant mobility χ(ρ) = χ and
a variable diffusion D(ρ) = Dρ[C(ρ)/ρ]′. Note that the
condition D(ρ) ≥ 0 requires that [C(ρ)/ρ]′ ≥ 0. This gives
a constraint on the possible forms of C(ρ).

2.9 Generalized Smoluchowski equation

The NFP equation (43) can be put in the form of a gen-
eralized Smoluchowski (GS) equation

∂ρ

∂t
= ∇ · [χ(∇p+ ρ∇Φ)] , (44)

with a barotropic equation of state p(ρ) given by

p′(ρ) = TρC′′(ρ). (45)

Since C is convex, we have p′(ρ) ≥ 0. On the other hand,
integrating equation (45) twice, we get

TC(ρ) = ρ

∫ ρ p(ρ′)
ρ′2 dρ′. (46)

Therefore, the free energy (36) can be rewritten

F [ρ] =
1
2

∫
ρΦdr +

∫
ρ

∫ ρ p(ρ′)
ρ′2 dρ′dr. (47)

With these notations, the H-theorem (24) becomes

Ḟ = −
∫
χ

ρ
(∇p+ ρ∇Φ)2dr ≤ 0. (48)

The stationary solutions of the GS equation (44) satisfy
the relation

∇p+ ρ∇Φ = 0, (49)

which is similar to a condition of hydrostatic equilibrium.
Since p = p(ρ), this relation can be integrated to give
ρ = ρ(Φ) through

∫ ρ p′(ρ′)
ρ′

dρ′ = −Φ. (50)

This is equivalent to

p′(ρ)
ρ

= − 1
ρ′(Φ)

. (51)

This relation can also be obtained from equations (45) and
(31). Therefore, we recover the fact that, in the steady
state, ρ = ρ(Φ) is a monotonically decreasing function of
Φ. We also note the identity

p(ρ) =
1
χ
D(ρ)ρ = Tρ2

[
C(ρ)
ρ

]′
= T [C′(ρ)ρ− C(ρ)].

(52)

Finally, we note that the relation (50), equivalent to the
condition of hydrostatic equilibrium (49), can also be ob-
tained by extremizing the free energy (47) at fixed mass
writing δF − αδM = 0. More precisely, we have the im-
portant result: a steady solution of the generalized Smolu-
chowski equation (44) is linearly dynamically stable iff it
is a (local) minimum of the free energy F [ρ] at fixed mass
M [ρ] = M . This corresponds to the minimization prob-
lem (39) with equation (47). Note that the GS equation
has been introduced here in a very general context. In this
sense, it is valid for arbitrary value of χ (not necessarily
small). Alternatively, we shall see in Section 4.8 that a
generalized Smoluchowski equation with χ = 1/ξ → 0 can
be derived from a generalized Kramers equation in the
strong friction limit ξ → +∞.

2.10 Phenomenological derivation of the nonlinear
Fokker-Planck equation

The form of the diffusion current appearing in the NFP
equation (8) can be obtained by different phenomenolog-
ical procedures.

2.10.1 Functional derivative

For a given free energy functional F [ρ], we can introduce
phenomenologically a dynamical model by writing the evo-
lution of the density as a continuity equation ∂tρ = −∇·J
where the current is proportional to the gradient of the
functional derivative of the free energy [36], i.e.

∂ρ

∂t
= ∇ ·

[
χ(r, t)ρ∇δF

δρ

]
. (53)

For the free energy (36), we have

δF

δρ
= TC′(ρ) + Φ, (54)

so that

∂ρ

∂t
= ∇ · [χ(r, t) (TρC′′(ρ)∇ρ+ ρ∇Φ)] . (55)

This equation is more general than equation (8). It shows
that, for a given free energy, we can introduce an infinite
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class of NFP equations where χ(r, t) is an arbitrary pos-
itive function of position and time. In particular, χ(r, t)
can be a positive function of the density ρ(r, t). If we set
χ(r, t) = χg(ρ)/ρ we recover equation (8) as a particular
case. We can also write equation (55) in the alternative
form

∂ρ

∂t
= ∇ ·

[
χ̃(r, t)

(
T∇ρ+

1
C′′(ρ)

∇Φ
)]

, (56)

where χ̃(r, t) is an arbitrary positive function of position
and time. If we set χ̃(r, t) = χh(ρ) we recover equa-
tion (8). These two alternative forms (55) and (56) were
given in [33].

On the other hand, the formulation (53) ensures that
the free energy decreases monotonically provided that
χ(r, t) is positive. Indeed,

Ḟ =
∫
δF

δρ

∂ρ

∂t
dr = −

∫
δF

δρ
∇ · J dr =

∫
J · ∇δF

δρ
dr = −

∫
χ(r, t)ρ

(
∇δF

δρ

)2

dr ≤ 0. (57)

Furthermore, a steady state of equation (53) satisfies Ḟ =
0, i.e. ∇(δF/δρ) = 0 leading to

δF

δρ
= −Tα, (58)

where α is a constant of integration. This is equivalent to
the extremization of F at fixed mass M if we write the
first variations as δF + TαδM = 0. Therefore, a steady
state extremizes the free energy at fixed mass. Using equa-
tion (54), we find that the equilibrium density profile sat-
isfies

C′(ρ) = −βΦ− α. (59)

Finally, using Lyapunov’s direct method, one can show
that a steady state ρ(r) of equation (53) is linearly dynam-
ically stable iff it is a (local) minimum of F at fixed mass.
We again emphasize that the stationary states of equa-
tion (55), and the H-theorem, only depend on the form of
the free energy F [ρ] and are independent on the positive
function χ(r, t). These properties are therefore valid for
the whole class of NFP equations associated with a given
free energy functional. Therefore, for a given free energy
specified by C(ρ), we can construct an infinite class of
NFP equations with arbitrary χ(r, t) that have the same
equilibrium states (59) but a different dynamics.

2.10.2 Onsager’s linear thermodynamics

The previous approach is equivalent to Onsager’s linear
thermodynamics. Indeed, at equilibrium, we expect that
the distribution ρ(r) minimizes the free energy F at fixed
mass. This leads to equation (58) or (59). Noting that the
chemical potential

λ(r, t) ≡ δF

δρ
= TC′(ρ) + Φ, (60)

is uniform at equilibrium, the linear thermodynamics of
Onsager suggests that, close to equilibrium, the current is
proportional to the gradient of the chemical potential. If
we write

J = −χ(r, t)ρ∇λ(r, t), (61)

the linear thermodynamics of Onsager leads to equa-
tion (53).

2.10.3 Maximum free energy dissipation principle

The same results can be obtained from a variational for-
mulation, called the Maximum Free Energy Dissipation
(MFED) principle which is the canonical ensemble ver-
sion of the Maximum Entropy Production (MEP) prin-
ciple [33]. At equilibrium, the optimal distribution ρ(r)
minimizes the free energy F [ρ] at fixed mass M . Out of
equilibrium, we may expect that the optimal current J
maximizes the rate of free energy dissipation Ḟ [J] under
some constraints. This can be viewed as a variational for-
mulation of Onsager’s linear thermodynamics. The rate of
dissipation of free energy is given by

Ḟ =
∫
δF

δρ

∂ρ

∂t
dr = −

∫
δF

δρ
∇ · J dr =

∫
J · ∇δF

δρ
dr.

(62)

We shall determine the optimal current J∗ which maxi-
mizes the rate of dissipation of free energy Ḟ under the
constraint J2 ≤ C(r, t) putting a physical bound on |J|. It
can be shown that the bound is always reached so that we
can replace the inequality by an equality. Thus, we write
the variational problem as

δḞ + δ

(∫
J2

2ρχ(r, t)
dr

)
= 0, (63)

where χ(r, t) is a local Lagrange multiplier. Performing
the variations on J, we obtain

J∗ = −χ(r, t)ρ∇δF

δρ
, (64)

which returns equation (53). Note that if we introduce the
“dissipation” function

Ed ≡
∫

J2

2ρχ(r, t)
dr, (65)

we have

Ed[J∗] = −1
2
Ḟ [J∗]. (66)

On the other hand, since δ2(Ḟ + Ed) = − ∫ (δJ)2

2ρχ dr ≤ 0,
the optimal current (64) maximizes the dissipation of free
energy under the constraint J2 ≤ C(r, t).
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2.11 Kinetic derivation of the nonlinear Fokker-Planck
equation

Nonlinear Fokker-Planck equation where the diffusion co-
efficient and the mobility explicitly depend on the local
concentration of particles can be derived from a kinetic
theory, starting from the master equation, and assuming
that the probabilities of transition explicitly depend on the
occupation numbers (concentrations) of the initial and ar-
rival states. We briefly summarize the approach developed
by Kaniadakis [12] and make the link with the phenomeno-
logical equations studied previously.

We introduce a stochastic dynamics by defining the
probability of transition of a particle from position r to
position r′. Following Kaniadakis [12], we assume the fol-
lowing form

π(r → r′) = w(r, r − r′)a[ρ(r, t)]b[ρ(r′, t)]. (67)

Usual stochastic processes correspond to a(ρ) = ρ and
b(ρ) = 1: the probability of transition is proportional to
the density of the initial state and independent on the den-
sity of the final state. They lead to the ordinary Fokker-
Planck equation (86) as will be shown below. Here, we
assume a more general dependence on the occupancy in
the initial and arrival states. This can account for micro-
scopic constraints like close-packing effects that can in-
hibitate the transition. Quite generally, the evolution of
the density satisfies the master equation

∂ρ

∂t
=

∫
[π(r′ → r) − π(r → r′)] dr′. (68)

Assuming that the evolution is sufficiently slow, and local,
such that the dynamics only permits values of r′ close to
r, one can develop the term in brackets in equation (68)
in powers of r − r′. Proceeding along the lines of [12], we
obtain a Fokker-Planck-like equation

∂ρ

∂t
=

∂

∂xi

[(
ζi +

∂ζij
∂xj

)
γ(ρ) + γ(ρ)

∂ lnκ(ρ)
∂ρ

ζij
∂ρ

∂xj

]
,

(69)
with

γ(ρ) = a(ρ)b(ρ), κ(ρ) =
a(ρ)
b(ρ)

, (70)

and

ζi(r) = −
∫
yiw(r,y)dy, (71)

ζij(r) =
1
2

∫
yiyjw(r,y)dy. (72)

The moments ζi and ζij are fixed by the ordinary Langevin
equation

dr
dt

= −χ∇Φ+
√

2DR(t), (73)

where χ and D are constant. Assuming isotropy ζi = Ji,
ζij = Dδij , the kinetic equation (69) becomes

∂ρ

∂t
= ∇ ·

[
(J + ∇D)γ(ρ) + γ(ρ)

∂ lnκ(ρ)
∂ρ

D∇ρ
]
. (74)

Now, according to the Langevin equation (73), D is inde-
pendent on r and J = χ∇Φ. Thus, we get

∂ρ

∂t
= ∇ ·

[
Dγ(ρ)

∂ lnκ(ρ)
∂ρ

∇ρ+ χγ(ρ)∇Φ
]
. (75)

If we define

h(ρ) = γ(ρ)
∂ lnκ(ρ)
∂ρ

, g(ρ) = γ(ρ), (76)

the foregoing equation can be written

∂ρ

∂t
= ∇ · [Dh(ρ)∇ρ+ χg(ρ)∇Φ] , (77)

and it coincides6 with the phenomenological equation (8).
We note that

lnκ(ρ) = C′(ρ). (78)

We also have the relations

a(ρ) =
√
γ(ρ)κ(ρ) =

√
g(ρ)eC

′(ρ)/2, (79)

b(ρ) =

√
γ(ρ)
κ(ρ)

=
√
g(ρ)e−C

′(ρ)/2. (80)

Inversely

g(ρ) = a(ρ)b(ρ), C′(ρ) = ln
[
a(ρ)
b(ρ)

]
, (81)

h(ρ) = b(ρ)a′(ρ) − a(ρ)b′(ρ). (82)

It seems natural to assume that the transition probability
is proportional to the density of the initial state so that
a(ρ) = ρ. In that case, we obtain an equation of the form

∂ρ

∂t
= ∇ · (D [b(ρ) − ρb′(ρ)]∇ρ+ χρb(ρ)∇Φ) . (83)

Note that the coefficients of diffusion and mobility are not
independent since they are both expressed in terms of b(ρ).
Choosing b(ρ) = 1, i.e. a probability of transition which
does not depend on the population of the arrival state,
leads to the standard Fokker-Planck equation (86). If,
now, we assume that the transition probability is blocked
(inhibited) if the concentration of the arrival state is equal
to σ0, then it seems natural to take b(ρ) = 1 − ρ/σ0. In
that case, we obtain

∂ρ

∂t
= ∇ · (D∇ρ+ χρ(1 − ρ/σ0)∇Φ) , (84)

6 In Section 2.1, we have obtained generalized Fokker-Planck
equations by using ordinary Master equations (based on usual
transition probabilities a(ρ) = ρ and b(ρ) = 1) and general-
ized Langevin equations where the diffusion coefficient and the
mobility depend on the density. In this section, we have ob-
tained generalized Fokker-Planck equations by using general-
ized Master equations (based on density dependent transition
probabilities) and ordinary Langevin equations with constant
coefficients.
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which will be considered in Section 3.5. Inversely, we can
wonder what the general form of the mobility will be if we
assume a normal diffusion h(ρ) = 1. This leads to b(ρ) −
ρb′(ρ) = 1 which is integrated in b(ρ) = 1+Kρ where K is
a constant. Interestingly, we find that this condition selects
the class of fermions (K = −1) and bosons (K = +1) and
intermediate statistics (arbitrary K). The corresponding
NFP equation is

∂ρ

∂t
= ∇ · (D∇ρ+ χρ(1 +Kρ)∇Φ) , (85)

which will be considered in Section 3.6.

3 Examples of nonlinear Smoluchowski
equations and generalized Keller-Segel
models

In this section, we give several explicit examples of non-
linear mean field Fokker-Planck equations. Some corre-
spond to well-known forms of entropies, and others are
new. We emphasize that these equations can have appli-
cations in different domains of physics as discussed in Sec-
tion 2.3. Importantly, they can provide generalized Keller-
Segel models of chemotaxis (see Sect. 2.4). Most of these
models have not been considered before in biology because
the connection with generalized thermodynamics was not
made. This is why we give a relatively detailed descrip-
tion of these models since their applications in biology are
new.

3.1 Standard model: Boltzmann entropy

If we take h(ρ) = 1 and g(ρ) = ρ, we get the ordinary
Smoluchowski equation

∂ρ

∂t
= ∇ · (D∇ρ+ χρ∇Φ) . (86)

It corresponds to an ordinary diffusion D(ρ) = D and
a constant mobility χ(ρ) = χ. The associated stochastic
process is

dr
dt

= −χ∇Φ+
√

2DR(t). (87)

The entropy is the Boltzmann entropy

S = −
∫
ρ ln ρ dr, (88)

and the stationary solution of equation (86) is the
Boltzmann distribution

ρ = e−βΦ−α−1. (89)

The pressure law is

p(ρ) = ρT. (90)

This is similar to the equation of state for an isothermal
gas with constant temperature T . When the Fokker-
Planck equation (86) is coupled to the Poisson equa-
tion (5), we obtain the Smoluchowski-Poisson system de-
scribing a gas of self-gravitating Brownian particles [41,42,
56–59]. When the Fokker-Planck equation (86) is coupled
to the field equation (3), we obtain the standard Keller-
Segel model describing the chemotactic aggregation of bi-
ological populations [52].

3.2 Power law diffusion: Tsallis entropy

If we take h(ρ) = qρq−1 and g(ρ) = ρ, we obtain the NFP
equation

∂ρ

∂t
= ∇ · (D∇ρq + χρ∇Φ) . (91)

It corresponds to a power law diffusion D(ρ) = Dρq−1

and a constant mobility χ(ρ) = χ. This equation was
introduced by Plastino & Plastino [21]. The associated
stochastic process, introduced by Borland [25], is

dr
dt

= −χ∇Φ+
√

2Dρ
q−1
2 R(t). (92)

This model can take into account effects of non-ergodicity
and nonextensivity. It leads to a situation of anomalous
diffusion related to the Tsallis statistics. For q = 1, we
recover the standard Brownian model with a constant dif-
fusion coefficient, corresponding to a pure random walk.
In that case, the sizes of the random kicks are uniform
and do not depend on where the particle happens to be.
For q �= 1, the size of the random kicks changes, depend-
ing on the distribution of the particles around the “test”
particle. A particle which is in a region that is highly pop-
ulated [large ρ(r, t)] will tend to have larger kicks if q > 1
and smaller kicks if q < 1. Since the microscopics de-
pends on the actual density in space, this creates a bias in
the ergodic behavior of the system. Then, the dynamics
has a fractal or multi-fractal phase space structure [25].
The generalized entropy associated to equation (91) is the
Tsallis entropy

S = − 1
q − 1

∫
(ρq − ρ) dr, (93)

and the stationary solution is the Tsallis distribution

ρ =
(

1
q

) 1
q−1

[1 − (q − 1)(βΦ+ α)]1/(q−1)
+ . (94)

The pressure law is

p(ρ) = Tρq. (95)

This is similar to a polytropic gas with an equation of
state p = Kργ where K = T plays the role of a polytropic
temperature and q = γ is the polytropic index (we also
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set γ = 1 + 1/n). Note that the Tsallis entropy can be
written

S = −
∫
ρ ln(q) ρ dr, (96)

where we have introduced the q-logarithm

ln(q)(x) =
1

q − 1
(xq−1 − 1). (97)

The stationary solution can be written

ρ =
(

1
q

) 1
q−1

e−βΦ−α(q) (98)

with the q-exponential

e(q)(x) = [1 + (q − 1)x]
1

q−1 . (99)

For q = 1, we recover the standard model (86). For q =
2, we have some simplifications. In that case, the NFP
equation (91) becomes

∂ρ

∂t
= ∇ · (D∇ρ2 + χρ∇Φ)

. (100)

The entropy is the quadratic functional

S = −
∫
ρ2dr, (101)

and the stationary solution is

ρ = −1
2
(βΦ + α), (102)

corresponding to a linear relation between the density and
the potential. In that case, the differential equation (33)
determining the steady state reduces to the Helmholtz
equation. Finally, the pressure is

p(ρ) = Tρ2, (103)

corresponding to a polytrope with index n = 1. When the
NFP equation (91) is coupled to the Poisson equation (5),
we obtain the polytropic Smoluchowski-Poisson system
describing self-gravitating Langevin particles. When the
NFP equation (91) is coupled to the field equation (3), we
obtain a generalized Keller-Segel model of chemotaxis tak-
ing into account anomalous diffusion. These models have
been introduced by Chavanis and Sire [45,51,53].

3.3 Logotropic distributions: log-entropy

If we take h(ρ) = 1/ρ and g(ρ) = ρ, we obtain

∂ρ

∂t
= ∇ · (D∇ ln ρ+ χρ∇Φ) . (104)

The generalized entropy associated to equation (104) is
the log-entropy

S =
∫

ln ρ dr, (105)

and the stationary solution is

ρ =
1

α+ βΦ
. (106)

For a quadratic potential Φext = r2/2, this corresponds to
the Lorentzian function. The pressure is

p(ρ) = T ln ρ. (107)

This is similar to a logotropic equation of state [70]. This
is also connected to a polytropic equation of state (or
Tsallis distribution) with γ = q = 0. Indeed, the lo-
gotropic model (104) can be deduced from equation (91)
by writing D∇ρq = Dqρq−1∇ρ, taking q = 0 and re-
defining Dq → D. When the NFP equation (104) is
coupled to the Poisson equation (5), we obtain the lo-
gotropic Smoluchowski-Poisson system. When the NFP
equation (104) is coupled to the field equation (3), we ob-
tain a generalized Keller-Segel model of chemotaxis. These
models have been introduced by Chavanis and Sire [71].

3.4 Power law diffusion and drift: Tsallis entropy

We introduce here a new model generalizing the polytropic
model (91). If we take h(ρ) = qρq+µ−1 and g(ρ) = ρµ+1,
we obtain

∂ρ

∂t
= ∇ · (Dqρq+µ−1∇ρ+ χρµ+1∇Φ)

. (108)

This corresponds to a power law diffusion D(ρ) =
Dq
q+µρ

q+µ−1 and a power law mobility χ(ρ) = χρµ. The
associated stochastic process is

dr
dt

= −χρµ∇Φ+

√
2Dq
q + µ

ρ
q+µ−1

2 R(t). (109)

Since ρµ can be put in factor of the diffusion current in
equation (108), this model belongs to the infinite family
of NFP equations associated to the Tsallis entropy with
index q (see discussion in Sect. 2.10.1).

For µ = 0, we recover equation (91) with a constant
mobility and a power law diffusion. For (µ, q) = (0, 0),
we recover the logotropic Smoluchowski equation (104)
provided that we make the transformation Dq → D. For
µ = 1 − q, we have a normal diffusion and a power law
mobility

∂ρ

∂t
= ∇ · (Dq∇ρ+ χρ2−q∇Φ)

. (110)

For q = 2, we get

∂ρ

∂t
= ∇ · (2D∇ρ+ χ∇Φ) , (111)

which has the same equilibrium states as equation (100).
If we assume furthermore that Φ is given by the Poisson
equation (5), equation (111) reduces to the linear equation

∂ρ

∂t
= 2D∆ρ+ χλρ. (112)
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Finally, for q = 0 (making the transformation qD → D),
we obtain

∂ρ

∂t
= ∇ · (D∇ρ+ χρ2∇Φ)

, (113)

which has the same equilibrium states as equation (104).
When the NFP equation (108) is coupled to the field equa-
tion (3), we obtain a generalized Keller-Segel model of
chemotaxis taking into account anomalous diffusion and
anomalous mobility. This model will be studied in a forth-
coming paper, in continuity with [45].

3.5 Filling factor: Fermi-Dirac entropy

If we take h(ρ) = 1 and g(ρ) = ρ(1 − ρ/σ0), we obtain

∂ρ

∂t
= ∇ · (D∇ρ+ χρ(1 − ρ/σ0)∇Φ) . (114)

This corresponds to a normal diffusion D(ρ) = D and
a mobility χ(ρ) = χ(1 − ρ/σ0) vanishing linearly when
the density reaches the maximum value ρmax = σ0. The
associated stochastic process is

dr
dt

= −χ(1 − ρ/σ0)∇Φ +
√

2DR(t). (115)

The generalized entropy associated with equation (114) is
the Fermi-Dirac entropy in position space

S = −σ0

∫ {
ρ

σ0
ln

ρ

σ0
+

(
1 − ρ

σ0

)
ln

(
1 − ρ

σ0

)}
dr,

(116)

and the stationary solution is the Fermi-Dirac distribution
in position space

ρ =
σ0

1 + eβΦ+α
. (117)

From equation (117), we see that, in the stationary state,
ρ ≤ σ0. This bound is similar to the Pauli exclusion prin-
ciple in quantum mechanics. In fact, we can show that
ρ(r, t) remains bounded by σ0 during the whole evolution.
For σ0 → +∞, we recover the standard model (86).

An alternative model, with the same entropy and the
same equilibrium states, is obtained by taking h(ρ) =
1/(1 − ρ/σ0) and g(ρ) = ρ. This leads to

∂ρ

∂t
= ∇ · (−Dσ0∇ ln(1 − ρ/σ0) + χρ∇Φ) . (118)

This corresponds to a nonlinear diffusion with D(ρ) =
−σ0(D/ρ) ln(1− ρ/σ0) and a constant mobility χ(ρ) = χ.
Equation (118) can be put in the form of a generalized
Smoluchowski equation (44) with a pressure law

p(ρ) = −Tσ0 ln(1 − ρ/σ0). (119)

For ρ
 σ0, we recover the “isothermal” equation of state
p = ρT leading to the standard model (86). However, for

higher densities, the equation of state is modified and the
pressure diverges when ρ→ σ0. This prevents the density
from exceeding the maximum value σ0.

In the context of chemotaxis, the model (114) has
been introduced by Hillen & Painter [72] and, indepen-
dently, by Chavanis [33,66,73]. It provides a regulariza-
tion of the standard Keller-Segel model preventing over-
crowding, blow-up and unphysical singularities. The filling
factor (1− ρ/σ0) takes into account the fact that the par-
ticles cannot interpenetrate because of their finite size a.
Therefore, the maximum allowable density is σ0 ∼ 1/ad.
It is achieved when all the cells are packed together. In the
model (114), it is assumed that the mobility vanishes when
the density reaches the close packing value (ρ → σ0) while
the diffusion is not affected. The alternative model (118)
has been introduced in Chavanis [33,73]. In that case, the
mobility is assumed to be constant and the regulariza-
tion preventing overcrowding is taken into account in the
pressure law (119). As explained in Section 2.10.1, we can
multiply the diffusion term and the mobility term by the
same positive function χ(r, t) in order to obtain a more
general model with the same entropy and the same equi-
librium states. Note finally that an equation similar to
equation (114) has been introduced by Robert & Som-
meria [61] (see also [28]) in the statistical mechanics of
two-dimensional turbulence for two vorticity levels 0 and
σ0. In that case, ρ represents the coarse-grained vorticity ω
and Φ plays the role of the stream function ψ. The “exclu-
sion principle” leading to the Fermi-Dirac entropy (116)
is a consequence of the 2D Euler equation implying that
the vorticity levels cannot overlap so that ω(r, t) ≤ σ0.
These analogies between chemotaxis and 2D turbulence
are further discussed in [73].

3.6 Fermi, Bose and intermediate statistics

If we take h(ρ) = 1 and g(ρ) = ρ(1 +Kρ), we obtain

∂ρ

∂t
= ∇ · (D∇ρ+ χρ(1 +Kρ)∇Φ) . (120)

This corresponds to a normal diffusion D(ρ) = D and
a variable mobility χ(ρ) = χ(1 + Kρ). The associated
stochastic process is

dr
dt

= −χ(1 +Kρ)∇Φ+
√

2DR(t). (121)

Here, K is a real number taking positive or negative val-
ues. When K > 0 the mobility is enhanced in regions of
large densities and when K < 0, it is reduced. This takes
into account inclusion (K > 0) or exclusion (K < 0) prin-
ciples. For K = 0, we recover the standard model (86).
The generalized entropy associated with equation (120) is

S = −
∫ [

ρ ln ρ− 1
K

(1 +Kρ) ln (1 +Kρ)
]
dr,

(122)
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and the stationary solution is

ρ =
1

eβΦ+α −K
. (123)

For K = +1 we obtain the Bose-Einstein statistics and for
K = −1 we obtain the Fermi-Dirac statistics. For other
values of K, we obtain intermediate statistics (quons) in-
terpolating between fermions and bosons. For K = 0, we
recover the Boltzmann statistics.

An alternative model with the same entropy and the
same equilibrium states is obtained by taking h(ρ) =
1/(1 +Kρ) and g(ρ) = ρ. This leads to

∂ρ

∂t
= ∇ ·

(
1
K

∇ ln(1 +Kρ) + χρ∇Φ
)
. (124)

This corresponds to a nonlinear diffusion such thatD(ρ) =
(D/Kρ) ln(1+Kρ) and a constant mobility χ(ρ) = χ. The
pressure law is

p(ρ) =
T

K
ln(1 +Kρ). (125)

We recall that equation (120) can be obtained from the
master equation (68) when the transition probabilities are
of the form (67) with a(ρ) = ρ and b(ρ) = 1+Kρ. Alterna-
tively, the model (124) corresponds to a(ρ) = ρ/

√
1 +Kρ

and b(ρ) =
√

1 +Kρ.
The NFP equations (120) and (124) have been intro-

duced by Kaniadakis and Quarati [27] (see also [28] in the
context of the violent relaxation of 2D vortices and stel-
lar systems). For K = +1, they can provide a dynamical
model of the Bose-Einstein condensation in the canonical
ensemble which has been studied in detail in [30]. When
coupled to the field equation (3), the NFP equations (120)
and (124) could also provide generalized Keller-Segel mod-
els of chemotaxis.

3.7 Mixed model: anomalous diffusion and filling factor

The previous models focus individually on two important
effects: anomalous diffusion (see Sects. 3.2–3.4) and ex-
clusion constraints when the density becomes too large
(see Sect. 3.5). Here we introduce a mixed model which
combines these two effects in a single equation. If we take
h(ρ) = qρq+µ−1 and g(ρ) = ρµ+1(1 − ρ/σ0), we obtain

∂ρ

∂t
= ∇ · (Dqρq+µ−1∇ρ+ χρµ+1(1 − ρ/σ0)∇Φ

)
.

(126)

This corresponds to a power law diffusion such that
D(ρ) = [Dq/(q + µ)]ρq+µ−1 and a mobility χ(ρ) =
χρµ(1 − ρ/σ0). The associated stochastic process is

dr
dt

= −χρµ(1 − ρ/σ0)∇Φ +

√
2Dq
q + µ

ρ
q+µ−1

2 R(t).

(127)

The generalized entropy corresponding to equation (126)
is obtained by integrating twice the relation

C′′(ρ) =
qρq−2

1 − ρ/σ0
. (128)

A first integration gives

C′(ρ) = qσq−1
0 Φq−2

(
ρ

σ0

)
, (129)

where

Φm(t) =
∫ t

0

xm

1 − x
dx. (130)

Therefore, the generalized entropy can be expressed as

C(ρ) = qσq0

∫ ρ/σ0

0

Φq−2(t)dt. (131)

Note that it does not depend on µ since the term ρµ can
be put in factor of the diffusion current in equation (126);
see the discussion in Section 2.10.1.

Let us consider some particular cases. (i) For q = 1,
equation (126) has the same entropy and the same equi-
librium states as equation (114). (ii) For σ0 → +∞, we
recover equation (108). (iii) For µ = 0 and q = 2, we have

∂ρ

∂t
= ∇ · (D∇ρ2 + χρ(1 − ρ/σ0)∇Φ

)
. (132)

The generalized entropy is

S = −2σ2
0

∫ (
1 − ρ

σ0

)
ln

(
1 − ρ

σ0

)
dr, (133)

and the stationary solution is

ρ = σ0

[
1 − e(βΦ+α)/2σ0

]

+
. (134)

For σ0 → +∞, we recover equation (102). We can also
consider the alternative model

∂ρ

∂t
= ∇ ·

(
2ρD

1 − ρ/σ0
∇ρ+ χρ∇Φ

)
, (135)

which has the same entropy and the same equilibrium
states as equation (132). The pressure law is

p(ρ) = −2Tσ2
0 [ln(1 − ρ/σ0) − ρ/σ0] . (136)

(iv) For (µ, q) = (0, 0) and performing the transformation
qD → D, or directly taking h(ρ) = 1/ρ and g(ρ) = ρ(1 −
ρ/σ0), we obtain

∂ρ

∂t
= ∇ · (D∇ ln ρ+ χρ(1 − ρ/σ0)∇Φ) . (137)

This corresponds to a logarithmic diffusion and a mod-
ified mobility taking into account an exclusion principle
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through the filling factor. The generalized entropy is ob-
tained from the relation

C′′(ρ) =
1

ρ2(1 − ρ/σ0)
, (138)

leading to

C′(ρ) = − 1
σ0

{
ln

(
σ0

ρ
− 1

)
+
σ0

ρ

}
, (139)

and finally to the explicit expression

S = −
∫ (

1 − ρ

σ0

)
ln

(
σ0

ρ
− 1

)
dr. (140)

We can consider the alternative model

∂ρ

∂t
= ∇ ·

[
D

ρ(1 − ρ/σ0)
∇ρ+ χρ∇Φ

]
, (141)

with the same entropy and the same equilibrium states.
The associated pressure law is

p(ρ) = −T ln
(
σ0

ρ
− 1

)
. (142)

3.8 κ-entropy

We consider the κ-entropy

Sκ = − 1
2κ

∫
(ρ1+κ − ρ1−κ)dr. (143)

This entropy was introduced by Kaniadakis [12]. It can be
written

Sκ = −
∫
ρ ln(κ) ρ dr, (144)

with the κ-logarithm

ln(κ)(x) =
1
2κ

(xκ − x−κ). (145)

We have

C′(ρ) =
1
2κ

[
(1 + κ)ρκ − (1 − κ)ρ−κ

]
, (146)

C′′(ρ) =
1
2ρ

[
(1 + κ)ρκ + (1 − κ)ρ−κ

]
. (147)

If we take g(ρ) = ρ and h(ρ) = ρC′′(ρ), we obtain the
NFP equation

∂ρ

∂t
= ∇ ·

(
D

2
∇(ρ1+κ + ρ1−κ) + χρ∇Φ

)
. (148)

This corresponds to a power law diffusion D(ρ) = D
2 (ρκ+

ρ−κ) and a constant mobility χ(ρ) = χ. The associated
stochastic process is

dr
dt

= −χ∇Φ+
√
D(ρκ + ρ−κ)1/2R(t), (149)

and the stationary solution of equation (148) can be writ-
ten

ρ =
(

1 − κ

1 + κ

) 1
2κ

e
−(βΦ+α)/

√
1−κ2

(κ) , (150)

with the κ-exponential

e(κ)(x) = (κx+
√

1 + κ2x2)1/κ. (151)

Finally, the pressure law is

p(ρ) =
1
2
T (ρ1+κ + ρ1−κ). (152)

For κ = 0, we recover the standard model (86). These
results can be generalized to the (κ, r) entropy

Sκ,r = − 1
2κ

∫
ρr(ρ1+κ − ρ1−κ)dr, (153)

which reduces in some special cases to the Tsallis [9],
Abe [10] and Kaniadakis [12] entropies. The corresponding
NFP equation can be written

∂ρ

∂t
= ∇ ·

[
D

2κ
∇ (

aρ1+a + bρ1−b) + χρ∇Φ
]
, (154)

with a = κ + r and b = κ − r. Of course, we could
give many other examples of generalized Fokker-Planck
equations since there exists an infinite number of distri-
butions and entropic functionals. Therefore, we found it
more convenient in [33] to formulate the problem in a gen-
eral setting, using an arbitrary entropic functional of the
form (21).

4 Nonlinear mean field Fokker-Planck
equations in phase space

We now describe nonlinear mean field Fokker-Planck
equations in phase space taking into account the inertia
of the particles. Overdamped models will be recovered in
a limit of strong friction.

4.1 Generalized Kramers equation

We consider a system of N particles in interaction whose
dynamics is described by the stochastic Ito-Langevin
equations

dri
dt

= vi, (155)

dvi
dt

= −ξ(fi)vi −∇Φi +
√

2D(fi)Ri(t), (156)

where Φ(r, t) is a self-consistent potential given by the
mean field equation (2). In ordinary models, the friction ξ
and the diffusion coefficient D are constant. In that case,
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the statistical equilibrium state is the Maxwell-Boltzmann
distribution f ∼ e−βε where ε = v2/2+Φ(r) is the individ-
ual energy and the temperature T = 1/β is given by the
Einstein relation T = D/ξ. Here, for sake of generality,
the friction coefficient ξ(f) and the diffusion coefficient
D(f) are allowed to depend on the distribution function
f(r,v, t) = 〈∑N

i=1 δ(r − ri(t))δ(v − vi(t))〉. This can take
into account microscopic constraints that affect the dy-
namics and modify the equilibrium distribution. The evo-
lution of the distribution function f(r,v, t) is governed by
the nonlinear mean field Fokker-Planck equation

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
[
∂

∂v
(D(f)f) + ξ(f)fv

]
,

(157)

coupled to equation (2). We introduce the notations

Dh(f) =
d

df
(fD(f)), ξg(f) = fξ(f), (158)

where D and ξ are positive constants and h(f) and g(f)
are positive functions. The ordinary model with constant
diffusion D(f) = D and constant friction ξ(f) = ξ is re-
covered for h(f) = 1 and g(f) = f . With these notations,
the NFP equation (157) can be rewritten in the form of a
generalized Kramers (GK) equation

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
(
Dh(f)

∂f

∂v
+ ξg(f)v

)
.

(159)

It can be put in the conservative form

df

dt
= − ∂

∂v
· J, (160)

where

J = −
[
Dh(f)

∂f

∂v
+ ξg(f)v

]
, (161)

is a diffusion current. This structure guarantees the con-
servation of mass M =

∫
fdrdv.

4.2 Generalized free energy and H-theorem

We define the energy by

E =
1
2

∫
fv2 drdv +

1
2

∫
ρΦdr = K +W, (162)

where K is the kinetic energy and W is the potential en-
ergy. We define the temperature by

T =
D

ξ
. (163)

The Einstein relation is preserved in the generalized ther-
modynamical framework. We introduce the generalized
entropic functional

S = −
∫
C(f) drdv, (164)

where C(f) is a convex function defined by

C′′(f) =
h(f)
g(f)

. (165)

Finally, we introduce the generalized free energy

F = E − TS. (166)

The definition of the free energy (Legendre transform) is
preserved in the generalized thermodynamical framework.
Explicitly,

F [f ] =
1
2

∫
fv2 drdv +

1
2

∫
ρΦdr + T

∫
C(f) drdv.

(167)

A straightforward calculation (see Appendix G) shows
that

Ḟ = −
∫

1
ξg(f)

(
Dh(f)

∂f

∂v
+ ξg(f)v

)2

drdv. (168)

Therefore, Ḟ ≤ 0. We can also introduce the Massieu func-
tion J = S − βE which is related to the free energy by
J = −βF . It satisfies J̇ ≥ 0. If D = 0 (leading to T = 0),
we get F = E so that Ė ≤ 0. If χ = 0 (leading to β = 0),
we get J = S so that Ṡ ≥ 0.

4.3 Stationary solution

The steady states of equation (159) must satisfy Ḟ = 0.
According to equation (168), this implies J = 0 or explic-
itly

Dh(f)
∂f

∂v
+ ξg(f)v = 0. (169)

Using equations (163) and (165), we get

C′′(f)
∂f

∂v
+ βv = 0, (170)

which can be integrated into

C′(f) = −β
[
v2

2
+ λ(r)

]
, (171)

where λ(r) is a function of the position. Since C is convex,
this relation can be reversed to give

f(r,v) = F

[
β

(
v2

2
+ λ(r)

)]
, (172)

where F (x) = (C′)−1(−x) is a decreasing function. Since
J = 0 and ∂f/∂t = 0, the steady solution of equa-
tion (159) must also cancel the advective term

v · ∂f
∂r

−∇Φ · ∂f
∂v

= 0. (173)
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In other words, the steady solution of equation (159) is
a particular stationary solution of the Vlasov equation
(l.h.s.) whose form is selected by the “collision” term
(r.h.s.). Substituting equation (172) in equation (173), we
get

(∇λ−∇Φ) · v = 0, (174)

which must be true for all v. This yields

λ(r) = Φ(r) + α/β, (175)

where α is a constant of integration. Therefore, the sta-
tionary solution of equation (159) is given by

C′(f) = −βε− α, (176)

or, equivalently,

f(r,v) = F [βε(r,v) + α], (177)

where ε = v2/2 + Φ(r) is the energy of a particle. Thus,
in the steady state, the distribution function f = f(ε)
is a function of the individual energy. The potential Φ
is determined by an integrodifferential equation obtained
by substituting equation (177) in equation (2), using ρ =∫
fdv. The constant α is determined by the conservation

of mass. On the other hand, differentiating equation (176),
we obtain

df

dε
= − β

C′′(f)
. (178)

Since C is convex, i.e. C′′ > 0, the preceding relation
implies that f ′(ε) < 0. Therefore, f(ε) is a decreasing
function of the energy.

4.4 Minimum of free energy

The critical points of free energy at fixed mass are deter-
mined by the variational problem

δF + TαδM = 0, (179)

where α is a Lagrange multiplier. These variations give

C′(f) = −βε− α. (180)

Therefore, comparing with equation (176), we find that a
stationary solution of equation (159) is a critical point of
F at fixed mass. Furthermore, it is shown in [33] that a
steady state of equation (159) is linearly dynamically sta-
ble iff it is a minimum (at least local) of F at fixed mass.
In this sense, dynamical and generalized thermodynamical
stability in the canonical ensemble coincide. This property
also results from Lyapunov’s direct method [36]. Finally,
if F is bounded from below, we conclude from the above
properties that the system will converge to a stable steady
state for t → +∞ which is a (local) minimum of F [f ] at
fixed mass. If several local minima exist, the choice of the
final steady state will depend on a complicated notion of

basin of attraction. In conclusion, we have the important
result: a steady solution of the generalized Kramers equa-
tion (159) is linearly dynamically stable iff it is a (local)
minimum of the free energy F [f ] at fixed mass M [f ] = M .
This corresponds to the minimization problem:

min
f

{F [f ]|M [f ] = M}. (181)

Taking the second variations of F and using equa-
tion (178), the condition of dynamical stability is

δ2F [δf ] = −1
2

{∫
(δf)2

f ′(ε)
drdv −

∫
δρδΦdr

}
≥ 0, (182)

for all perturbations δf that conserve mass.

4.5 Particular cases

If we take h(f) = 1 and g(f) = 1/C′′(f) we get

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
(
D
∂f

∂v
+

ξ

C′′(f)
v
)
.

(183)

In that case, we have a constant diffusion D(f) = D and
a variable friction ξ(f) = ξ/[fC′′(f)]. If we take g(f) = f
and h(f) = fC′′(f) we get

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
(
DfC′′(f)

∂f

∂v
+ ξfv

)
.

(184)

In that case, we have a constant friction ξ(f) = ξ and a
variable diffusion D(f) = Df [C(f)/f ]′.

4.6 Functional derivative

For a given free energy functional F [f ], we can introduce
phenomenologically a dynamical model by writing the evo-
lution of the distribution function as a continuity equation
dtf = − ∂

∂v ·J where the current is proportional to the gra-
dient in velocity space of the functional derivative of the
free energy, i.e.

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
[
ξ(r,v, t)f

∂

∂v
δF

δf

]
.

(185)

For the free energy (167), we have

δF

δf
= TC′(f) +

v2

2
+ Φ, (186)

so that

df

dt
=

∂

∂v
·
[
ξ(r,v, t)

(
TfC′′(f)

∂f

∂v
+ fv

)]
, (187)
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where we have introduced the material derivative d/dt =
∂/∂t+v·∂/∂r−∇Φ·∂/∂v in the advective term. This equa-
tion is more general than equation (159). It shows that,
for a given free energy, we can introduce an infinite class
of NFP equations where ξ(r,v, t) is an arbitrary positive
function of position, velocity and time. In particular, it can
be a function of f(r,v, t). If we set ξ(r,v, t) = ξg(f)/f we
recover equation (159). We can also write equation (187)
in the alternative form

df

dt
=

∂

∂v
·
[
ξ̃(r,v, t)

(
T
∂f

∂v
+

1
C′′(f)

v
)]

, (188)

where ξ̃(r,v, t) is an arbitrary positive function of posi-
tion, velocity and time. If we set ξ̃(r,v, t) = ξh(f) we
recover equation (159). These two alternative forms (187)
and (188) were given in [33]. On the other hand, the gen-
eral structure of equation (185) implies an H-theorem for
the free energy (Ḟ ≤ 0). The derivation is similar to that
given in Section 2.10.1.

4.7 Equation of state

The stationary solutions of the nonlinear Kramers equa-
tion (159) are of the form f = f(ε) with f ′(ε) < 0 where
ε = v2/2 + Φ(r) is the energy of a particle. The func-
tion f is determined by the convex function C accord-
ing to equation (176). Therefore, at equilibrium, the den-
sity ρ =

∫
fdv and the pressure p = 1

d

∫
fv2dv can be

expressed as ρ = ρ(Φ(r)) and p = p(Φ(r)). Eliminating
the potential Φ(r) between these expressions, we obtain a
barotropic equation of state p = p(ρ) where the function
p(ρ) is entirely determined by the convex function C(f).
Furthermore, the condition that the distribution function
is a function f = f(ε) of the energy alone implies the
condition of hydrostatic balance. Indeed, we have

∇p =
1
d

∫
f ′(ε)∇Φv2dv =

1
d
∇Φ

∫
∂f

∂v
· vdv

= −∇Φ
∫
fdv = −ρ∇Φ. (189)

The condition of hydrostatic equilibrium can also be writ-
ten p′(Φ) = −ρ(Φ) or

p′(ρ) = − ρ

ρ′(Φ)
. (190)

Let us introduce the free energy functional

F [ρ] =
∫
ρ

∫ ρ p(ρ′)
ρ′2

dρ′dr +
1
2

∫
ρΦdr. (191)

In Appendix D, we show that this functional of ρ can
be deduced from the free energy functional F [f ] given by
equation (166) by using the relation (177) valid at equilib-
rium. Furthermore, we show in Appendix E that the min-
imization problem (181) is equivalent to the minimization
problem

min
ρ

{F [ρ]|M [ρ] = M}, (192)

where ρ(r) is the density profile corresponding to the dis-
tribution function f(r,v). This equivalence considerably
simplifies the study of the stability of a steady state of the
NFP equation (159). A critical point of F [ρ] at fixed mass
satisfies the condition of hydrostatic balance. Indeed, writ-
ing δF − αδM = 0, we have

∫ ρ[p′(ρ′)/ρ′]dρ′ + Φ− α = 0
implying ∇p + ρ∇Φ = 0. On the other hand, taking the
second variations of F and using equation (190), the con-
dition of stability can be written

δ2F [δρ] = −1
2

{∫
(δρ)2

ρ′(Φ)
dr −

∫
δρδΦdr

}
≥ 0, (193)

for all perturbations δρ that conserve mass.

4.8 The strong friction limit

In this section, we shall derive the generalized
Smoluchowski equation from the generalized Kramers
equation in the strong friction limit ξ → +∞. The general
case where both the diffusion coefficient and the friction
coefficient depend on the distribution function is treated
in [54] by using a Chapman-Enskog expansion. Here, we
restrict ourselves to the generalized Kramers equation
with constant friction coefficient

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
[
ξ

(
TfC′′(f)

∂f

∂v
+ fv

)]
.

(194)

In that case, it is possible to develop a procedure sim-
pler that the Chapman-Enskog expansion (see [74]). Let
us derive the hierarchy of hydrodynamic equations asso-
ciated with Eq. (194). Defining the density and the local
velocity by

ρ =
∫
f dv, ρu =

∫
fv dv, (195)

and integrating equation (194) on velocity, we get the con-
tinuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0. (196)

Next, multiplying equation (194) by v and integrating on
velocity, we obtain the momentum equation

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −∂Pij

∂xj
− ρ

∂Φ

∂xi
− ξρui,

(197)

where we have defined the pressure tensor

Pij =
∫
fwiwj dv, (198)

where w = v − u is the relative velocity. Using equa-
tion (196), the momentum equation can be rewritten in
the form

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= −∂Pij

∂xj
− ρ

∂Φ

∂xi
− ξρui.

(199)
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We now consider the strong friction limit ξ → +∞ with
fixed T . Since the term in parenthesis in equation (194)
must vanish to leading order, we find that the out of equi-
librium distribution function f0(r,v, t) is given by

C′(f0) = −β
[
v2

2
+ λ(r, t)

]
+O(ξ−1), (200)

where λ(r, t) is a constant of integration that is determined
by the density according to

ρ(r, t) =
∫
f0dv = ρ[λ(r, t)]. (201)

Note that the distribution function f0 is isotropic so that
the velocity u(r, t) = O(ξ−1) and the pressure tensor
Pij = pδij +O(ξ−1) where p is given by

p(r, t) =
1
d

∫
f0v

2dv = p[λ(r, t)]. (202)

Eliminating λ(r, t) between the two expressions (201)
and (202), we find that the fluid is barotropic with an equa-
tion of state p = p(ρ) entirely determined by the function
C(f). Of course, this is the same equation of state as the
one obtained at equilibrium (see Sect. 4.7). Now, consid-
ering the momentum equation (197) in the limit ξ → +∞,
we find that

ρu = −1
ξ
(∇p+ ρ∇Φ) +O(ξ−2). (203)

Inserting this relation in the continuity equation (196), we
obtain the generalized Smoluchowski equation [33,54,74]:

∂ρ

∂t
= ∇ ·

[
1
ξ
(∇p+ ρ∇Φ)

]
. (204)

The free energy associated to this equation is

F [ρ] =
∫
ρ

∫ ρ p(ρ′)
ρ′2

dρ′dr +
1
2

∫
ρΦdr. (205)

It can be deduced from the free energy (166) by using
equation (200) to express F [f ] as a functional F [ρ] = F [f0]
of the density (see Appendix D). A direct calculation leads
to the H-theorem

Ḟ = −
∫

1
ξρ

(∇p+ ρ∇Φ)2dr ≤ 0. (206)

The stationary solutions of the generalized Smoluchowski
equation (204) are critical points of free energy at fixed
mass. They satisfy the condition of hydrostatic balance

∇p+ ρ∇Φ = 0. (207)

From Lyapunov’s direct method, we conclude that a
steady state of the generalized Smoluchowski equa-
tion (204) is linearly dynamically stable iff it is a (local)
minimum of F at fixed mass M . This corresponds to the
minimization problem (192).

The condition of hydrostatic balance (207) only holds
at equilibrium. In the strong friction limit ξ → +∞, the
out-of-equilibrium distribution is of the form f0 = f0(ε′)
with ε′ = v2/2 + λ(r, t). Taking the gradient of equa-
tion (202) and using a procedure similar to that followed
in equation (189) with λ(r, t) in place of Φ(r), we obtain

∇p = −ρ∇λ. (208)

Since p = p(ρ) and λ = λ(ρ), this can be rewritten

λ′(ρ) = −p
′(ρ)
ρ

, (209)

so that the out-of-equilibrium chemical potential λ(r, t) is
given by

λ(ρ) = −
∫ ρ p′(x)

x
dx. (210)

At equilibrium, comparing equations (208) and (207), we
have λ(r) = Φ(r)+α/β and equation (200) leads to equa-
tion (176).

4.9 The damped Euler equations

The generalized Smoluchowski equation (204) can also be
obtained formally from the damped Euler7 equations [33]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (211)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p−∇Φ− ξu. (212)

The Lyapunov functional associated with the damped
Euler equations is the generalized free energy

F [ρ,u] =
∫
ρ

∫ ρ p(ρ′)
ρ′2

dρ′dr +
1
2

∫
ρΦdr +

∫
ρ
u2

2
dr.

(213)

It satisfies an H-theorem of the form (see Appendix G):

Ḟ = −
∫
ξρu2dr ≤ 0. (214)

A steady state of the damped Euler equations (211), (212)
satisfies the condition of hydrostatic equilibrium (207).
Furthermore, from Lyapunov’s direct method, it is lin-
early dynamically stable iff it is a minimum of the free

7 Hydrodynamical Euler equations involving a friction force
−ξ(|u|)u have appeared in various contexts for different rea-
sons. We may mention, for example, bottom-wall friction in
2D turbulence [75], frictional force of air on a turbulent soap
film [76], effective dynamical friction in the process of violent
relaxation for collisionless stellar systems [28] and Epstein or
Stokes friction laws for the dynamics of dust particles in the
solar nebula [77].
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energy (213) at fixed mass. This corresponds to the mini-
mization problem

min
ρ,u

{F [ρ,u]|M [ρ] = M}. (215)

The friction coefficient in equation (212) measures the im-
portance of inertial effects. For ξ = 0, we recover the usual
barotropic Euler equations. Alternatively, if we consider
the strong friction limit ξ → +∞, we can neglect the in-
ertial term in equation (212) and we get

ξu = −1
ρ
∇p−∇Φ+O(ξ−1). (216)

Substituting this relation in the continuity equation (211),
we obtain the generalized Smoluchowski equation

∂ρ

∂t
= ∇ ·

[
1
ξ
(∇p+ ρ∇Φ)

]
. (217)

The physical justification of the damped Euler equa-
tions (211), (212) is not clear. They can be obtained from
equations (196), (197) if we close the hierarchy by invok-
ing a local thermodynamic equilibrium (L.T.E.) condi-
tion [33]. However, the rigorous justification of this L.T.E.
condition is not established, so this approach remains
heuristic. Nevertheless, hydrodynamic equations (hyper-
bolic models) of the form (211), (212) have been proposed
in the context of chemotaxis to describe the organization
of endothelial cells [51,78,79]. They lead to the formation
of filaments that are interpreted as the beginning of a vas-
culature. These filaments are not obtained in the Keller-
Segel model (parabolic model) which leads to point-wise
blow up or round aggregates [42,52].

5 Explicit examples

In this section, we give explicit examples showing the pas-
sage from the generalized Kramers equation to the gener-
alized Smoluchowski equation in the strong friction limit.

5.1 Isothermal systems: Boltzmann entropy

If we consider the Boltzmann entropy

SB[f ] = −
∫
f ln fdrdv, (218)

we get the ordinary Kramers equation

df

dt
=

∂

∂v
·
[
ξ

(
T
∂f

∂v
+ fv

)]
. (219)

The stationary state is the isothermal (Maxwell-
Boltzmann) distribution

f = Ae−βε, (220)

where A is determined by the conservation of mass. The
equation of state is the isothermal one

p = ρT. (221)

In the strong friction limit, we obtain the ordinary Smolu-
chowski equation

∂ρ

∂t
= ∇ ·

[
1
ξ
(T∇ρ+ ρ∇Φ)

]
. (222)

The corresponding free energy is the Boltzmann free en-
ergy

F [ρ] = T

∫
ρ ln ρ dr +

1
2

∫
ρΦ dr, (223)

and the stationary solution is the Boltzmann distribution

ρ = A′e−βΦ (224)

where A′ = (2π/β)d/2A.

5.2 Polytropes: Tsallis entropy

If we consider the Tsallis q-entropy

Sq[f ] = − 1
q − 1

∫
(f q − f)drdv, (225)

we get the polytropic Kramers equation

df

dt
=

∂

∂v
·
[
ξ

(
T
∂f q

∂v
+ fv

)]
. (226)

The stationary state is the polytropic distribution

f =
[
µ− (q − 1)β

q
ε

] 1
q−1

+

, (227)

where µ is determined by the conservation of mass. The
index n of the polytrope is related to the parameter q by
the relation

n =
d

2
+

1
q − 1

. (228)

Isothermal distribution functions are recovered in the limit
q → 1 (i.e. n → +∞). We shall consider q > 0 so that C
is convex. We have to distinguish two cases. (i) For q > 1,
i.e. n > d/2, the distribution has a compact support since
f is defined only for ε ≤ εm ≡ µq/[|q − 1|β] (it vanishes
at ε = εm). For ε ≥ εm, we set f = 0. For q → +∞, i.e.
n = d/2, f is the Heaviside function. (ii) For q < 1, the
distribution is defined for all energies. For large velocities,
it behaves like f ∼ v−(d−2n). Therefore, the density and
the pressure are finite only for n < −1, i.e. d/(d + 2) <
q < 1. Therefore the range of allowed parameters are

q > 1, n >
d

2
(case 1), (229)
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d

d+ 2
< q < 1, n < −1 (case 2). (230)

The distribution function (227) leads to the polytropic
equation of state (see Appendix H)

p = Kργ , γ = 1 +
1
n
. (231)

For n > d/2 the polytropic constant is

K =
1

n+ 1

[
ASd2

d
2−1Γ (d/2)Γ (1 − d/2 + n)

Γ (1 + n)

]−1/n

,

(232)
and for n < −1, we have

K = − 1
n+ 1

[
ASd2

d
2−1Γ (d/2)Γ (−n)

Γ (d/2 − n)

]−1/n

, (233)

where A = (β|q−1|/q)1/(q−1). In the strong friction limit,
we get the polytropic Smoluchowski equation

∂ρ

∂t
= ∇ ·

[
1
ξ
(K∇ργ + ρ∇Φ)

]
. (234)

The generalized free energy is the Tsallis free energy

F [ρ] =
K

γ − 1

∫
(ργ − ρ) dr +

1
2

∫
ρΦ dr, (235)

and the stationary solution is the polytropic distribution

ρ =
[
λ− γ − 1

Kγ
Φ

] 1
γ−1

. (236)

Other useful relations valid for polytropic distributions
are given in [80]. We note that a polytropic distribution
with index q in phase space yields a polytropic distribu-
tion with index γ = 1 + 2(q− 1)/[2 + d(q− 1)] in physical
space. In this sense, Tsallis distributions are stable laws
since the functions f(ε) and ρ(Φ) have a similar structure.
By comparing equation (227) to equation (236) or equa-
tion (166) with equation (225) to equation (235), we note
that K plays the same role in physical space as the tem-
perature T = 1/β in phase space. It is sometimes called a
“polytropic temperature”.

Quite generally, we define the local kinetic temperature
T (r) by d

2T (r) = 1
2 〈v2〉 or equivalently p(r) = ρ(r)T (r).

It is proportional to the velocity dispersion. Since, at
equilibrium, ρ = ρ(Φ) and p = p(Φ), we conclude that
T (r) = T [Φ(r)] is a function of the potential Φ. This
is true for any barotropic fluid at equilibrium. Now, for
a polytropic distribution, using equation (231), we have
T (r) = Kργ−1. Then, using equation (236) we obtain
T (r) = Kλ − γ−1

γ Φ(r) so that T is a linear function of
Φ with a gradient (γ − 1)/γ = 1/(n+ 1) = 2(q − 1)/[(d+
2)q − d] [80,81].

5.3 Fermions: Fermi-Dirac entropy

If we consider the Fermi-Dirac entropy

SFD[f ] = −η0
∫ {

f

η0
ln
f

η0
+

(
1− f

η0

)
ln

(
1− f

η0

)}
drdv,

(237)
we get the fermionic Kramers equation

df

dt
=

∂

∂v
·
[
ξ

(
−Tη0 ∂

∂v
ln

(
1 − f

η0

)
+ fv

)]
. (238)

The corresponding equation with normal diffusion and
nonlinear friction is

df

dt
=

∂

∂v
·
[
D

(
∂f

∂v
+ βf(1 − f/η0)v

)]
. (239)

The stationary state is the Fermi-Dirac distribution func-
tion

f =
η0

1 + λeβε
, (240)

where λ > 0 is determined by the conservation of mass.
The Fermi-Dirac distribution function (240) satisfies the
constraint f ≤ η0 which is related to the Pauli exclusion
principle in quantum mechanics. The isothermal distri-
bution function (220) is recovered in the non-degenerate
limit f 
 η0. This is the case when λ→ +∞, valid at high
temperatures T → +∞. On the other hand, in the com-
pletely degenerate limit, the distribution is a step func-
tion f = η0H(ε − εF ) where εF = − 1

β lnλ is the Fermi
energy. This is the case when λ → 0, valid at low tem-
peratures T → 0. This limiting distribution corresponds
to a polytrope with index n = d/2. The distribution in
physical space, obtained by integrating the Fermi-Dirac
statistics (240) on the velocity, can be written

ρ =
η0Sd2

d
2−1

βd/2
I d

2−1(λe
βΦ), (241)

where In is the Fermi integral

In(t) =
∫ +∞

0

xn

1 + tex
dx. (242)

The quantum equation of state for fermions is given in
parametric form by

ρ =
η0Sd2

d
2−1

βd/2
I d

2−1(t), p =
η0Sd2

d
2

dβ
d
2 +1

I d
2
(t). (243)

At high temperatures (t → +∞) we recover the clas-
sical isothermal law p = ρT and at low temperatures
(t→ 0) we get a polytropic equation of state p = Kργ with
γ = (d + 2)/2 (i.e. n = d/2) and K = 1

d+2( d
η0Sd

)2/d [82].
In the strong friction limit, we get the fermionic Smolu-
chowski equation (204) where the equation of state is given
by (243). The fermionic Smoluchowski-Poisson system has
been studied in [28,66,83].
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6 Conclusion

In this paper, we have studied a general class of non-
linear mean field Fokker-Planck equations [33] associated
with a formalism of effective generalized thermodynam-
ics (E.G.T.). We have given several physical examples
of application and we have shown that NFP equations
can provide generalizations of the standard Keller-Segel
model describing the chemotaxis of biological populations.
The main properties of these NFP equations are valid
for a large class of entropic functionals, encompassing the
Boltzmann, the Fermi-Dirac, the Bose-Einstein and the
Tsallis statistics. Indeed, the rich mathematical structure
of these equations is almost independent on the precise
form of the entropy. These results should therefore evi-
dence which properties in statistical mechanics are specific
to the standard Boltzmann entropy and which properties
are valid for a larger class of entropies. The distinguished
feature of the Boltzmann entropy is that it can be ob-
tained from a combinatorial analysis, assuming that all
the microstates are equiprobable. However, equiprobabil-
ity of the microstates is a strong postulate and it is not
clear whether it has a universal scope. The universality
of the Boltzmann entropy has been criticized long ago by
Einstein [84] who argued that the statistics applicable on
a system depends on its underlying dynamics (see discus-
sion in [85]). For example, the Boltzmann distribution can
be obtained from a stochastic process describing a classical
random walk where the kicks have uniform sizes. However,
different distributions emerge when the stochastic process
describes a biased random walk where the kicks depend on
the region where the particle happens to be. We think that
this is the case in many physical systems. This results in a
very complex geometrical structure of phase space (frac-
tal, multi-fractal,...) leading to non-Boltzmannian distri-
butions at equilibrium. Indeed, in such circumstances, the
microstates are not equiprobable since the system prefers
certain regions of phase space rather than others. It would
be interesting to derive the corresponding generalized en-
tropies (Tsallis, Abe, Kaniadakis,...) directly from a com-
binatorial analysis. For example, Tsallis entropy could be
the natural entropy on a fractal phase-space. The selec-
tion of the entropy demands a complete specification of
the microdynamics of the system in agreement with the
statement given long ago by Einstein [84].

Appendix A: The isotropic BGK operator

Let us consider a simple kinetic equation where the gen-
eralized Fokker-Planck operator in equation (159) is re-
placed by a generalized isotropic BGK operator. This
equation has been introduced in Appendix A of [54] and
we provide here some complements. The kinetic equa-
tion is

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
= −f − f0

τ
, (244)

where f0(r,v, t) is given by

C′(f0) = −β
[
v2

2
+ λ(r, t)

]
, (245)

or

f0 = F

{
β

[
v2

2
+ λ(r, t)

]}
, (246)

with F (x) = (C′)−1(−x). The function λ(r, t) is deter-
mined by the density by writing ρ =

∫
f0dv = ρ(λ). First,

we show that equation (244) admits an H-theorem for the
free energy (166). Recalling that the left hand side (Vlasov
term) conserves the energy and the Casimirs, hence F , we
find that

Ḟ = −
∫ (

TC′(f) +
v2

2

)
f − f0
τ

drdv. (247)

Using equation (245) and the fact that
∫
f0dv =

∫
fdv,

we have the identity

∫ (
TC′(f0) +

v2

2

)
f − f0
τ

drdv =

− β

∫
λ(r, t)

f − f0
τ

drdv = 0. (248)

Therefore, we can rewrite equation (247) in the form

Ḟ = −T
∫

[C′(f) − C′(f0)]
f − f0
τ

drdv. (249)

Since C is convex, we have

[C′(f) − C′(f0)] (f − f0) ≥ 0, (250)

so that Ḟ ≤ 0. On the other hand, using a procedure
similar to that described in Section 4.3, it is straightfor-
ward to prove that the steady states of equation (244) are
given by equation (176) and that a steady state of equa-
tion (244) is dynamically stable iff it is a (local) minimum
of F at fixed mass. The first two hydrodynamic equations
associated with equation (244) are

∂ρ

∂t
+ ∇ · (ρu) = 0, (251)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −∂Pij

∂xj
− ρ

∂Φ

∂xi
− 1
τ
ρui.

(252)

In the limit τ → 0, we can repeat the same arguments as
in Section 4.8 and we obtain the generalized Smoluchowski
equation

∂ρ

∂t
= ∇ · [τ(∇p+ ρ∇Φ)] . (253)

This equation can also be obtained from a Chapman-
Enskog expansion [54]. Rigorous mathematical results
have been obtained recently in [86].
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Appendix B: Connection between dynamical
and thermodynamical stability for nonlinear
mean field Fokker-Planck equations

Let us consider a small perturbation δρ around a station-
ary solution of the nonlinear mean field Fokker-Planck
equation (8). We write the time dependence of the per-
turbation as δρ ∼ eλt. It can be shown that λ is real, so
that the perturbation is damped exponentially for λ < 0
(stable) or increases exponentially for λ > 0 (unstable).
The linearized Fokker-Planck equation can be written

λδρ = −∇ · δJ. (254)

If we multiply equation (254) by C′′(ρ)δρ and integrate
the resulting expression over the volume, we get

λ

∫
C′′(ρ)(δρ)2dr =

∫
δJ · [C′′(ρ)∇δρ+ C′′′(ρ)δρ∇ρ] dr,

(255)

where we have used an integration by parts in the r.h.s.
Now, the linear variation of the current (10) around equi-
librium can be written

− δJ
D

= h′(ρ)δρ∇ρ+ h(ρ)∇δρ
+ βg′(ρ)δρ∇Φ + βg(ρ)∇δΦ. (256)

Using h(ρ) = C′′(ρ)g(ρ) and the relation

C′′(ρ)∇ρ = −β∇Φ, (257)

resulting from equation (29), we obtain

− δJ
Dg(ρ)

= C′′′(ρ)δρ∇ρ+ C′′(ρ)∇δρ+ β∇δΦ.
(258)

Then, equation (255) can be rewritten

λ

∫
C′′(ρ)(δρ)2dr + β

∫
δJ · ∇δΦdr = −

∫
(δJ)2

Dg(ρ)
dr.

(259)

Now, multiplying equation (254) by δΦ and integrating
over the volume we find that

λ

∫
δρδΦdr =

∫
δJ · ∇δΦdr, (260)

where we have used an integration by parts in the r.h.s.
Inserting equation (260) in equation (259), we obtain

− λβ

∫
(δρ)2

ρ′(Φ)
dr + λβ

∫
δρδΦdr = −

∫
(δJ)2

Dg(ρ)
dr.

(261)

On the other hand, the second variations of the rate of
free energy dissipation (24) around equilibrium are

δ2Ḟ = −
∫

(δJ)2

βDg(ρ)
dr, (262)

and they are clearly negative. Inserting equations (262)
and (40) in equation (261), we finally obtain the relation

2λδ2F = δ2Ḟ ≤ 0. (263)

This relation shows that a steady state of the nonlinear
mean field Fokker-Planck equation (8) is linearly dynam-
ically stable (λ < 0) iff it is a minimum (at least local)
of the free energy at fixed mass (δ2F > 0). Therefore,
dynamical and generalized thermodynamical stability co-
incide.

Appendix C: Stability of the homogeneous
phase and critical point

We consider a homogeneous stationary solution ρ(r) = ρ
of the nonlinear mean field Fokker-Planck equation (8).
The corresponding potential is Φ(r) = Φ = Uρ where
U ≡ ∫

u(x)dx. The dynamical evolution of a small per-
turbation around equilibrium is given by the linearized
equation

∂δρ

∂t
= ∇ · [Dh(ρ)∇δρ+ χg(ρ)∇δΦ]

= Dg(ρ) [C′′(ρ)∆δρ+ β∆δΦ] , (264)

where we have used equations (20) and (22) to get the sec-
ond line. The perturbations δρ and δΦ can be decomposed
in Fourier modes of the form f(r, t) =

∫
f̂(k)eik·reλ(k)tdk

leading to the dispersion relation

λ(k) = −Dg(ρ)k2 [C′′(ρ) − βv̂(k)] , (265)

where we have used δΦ̂ = (2π)dû(k)δρ̂ (convolution) and
set v̂(k) = −(2π)dû(k). The system is stable (λ < 0) if

C′′(ρ) − βv̂(k) > 0, (266)

for all k and unstable (to some wavenumbers) otherwise.
For a potential satisfying v̂ < 0, the homogeneous phase
is always stable. Otherwise, there exists a critical point in
the problem. The homogeneous phase is stable for

T > Tc ≡ v̂(k)max
C′′(ρ)

, (267)

where v̂(k)max is the largest value of v̂(k) achieved for k =
k∗. On the other hand, for T < Tc the homogeneous phase
is unstable to wavenumbers satisfying v̂(k) > TC′′(ρ). The
growth rate of the mode k is given by equation (265).
This stability analysis has been explicited for particular
potentials of the form (2) in [39,40,87]. It has also been
generalized to potentials of the form (3) in [88].

The condition of generalized thermodynamical stabil-
ity demands that ρ is a minimum of the free energy F [ρ],
given by equation (36), at fixed mass. Using equation (31),
the stability criterion (40) can be rewritten

δ2F =
1
2β

{∫
C′′(ρ)(δρ)2dr + β

∫
δρδΦdr

}
≥ 0,

(268)
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for all perturbations δρ that conserve mass. We need
therefore to investigate the eigenvalue equation

C′′(ρ)δρ+ βδΦ = λδρ. (269)

The homogeneous phase is a minimum of free energy at
fixed mass (stable) iff all the eigenvalues λ are positive. If
at least one eigenvalue is negative, the homogeneous phase
is an unstable saddle point of free energy at fixed mass.
Solving the eigenvalue equation (269) in Fourier space, we
get

C′′(ρ) − βv̂(k) = λ. (270)

The spectrum of eiganvalues is continuous and equa-
tion (270) determines the eigenmode k corresponding to
the eigenvalue λ. Therefore, the homogeneous phase is a
minimum of free energy at fixed mass (stable) iff the l.h.s.
of equation (270) is positive for all k. This returns the
condition (266), i.e. T > Tc. Alternatively, for T < Tc,
there exists modes k such that λ < 0 implying δ2F < 0
for these modes. In that case, the homogeneous phase is
a maximum or a saddle point of free energy at fixed mass
(unstable). Using the Parseval theorem, the second varia-
tions of free energy (268) can be written

δ2F =
1
2β

(2π)d
∫

[C′′(ρ) − βv̂(k)] |δρ̂|2dk, (271)

leading directly to the preceding results. We also check on
this explicit example (homogeneous state) that the condi-
tions of dynamical and generalized thermodynamical sta-
bility coincide. As shown in Appendix B, this is also true
for inhomogeneous equilibrium distributions.

Finally, let us show that Tc corresponds to a bifurca-
tion point. The general steady state of the nonlinear mean
field Fokker-Planck equation (8) is given by equation (29).
Close to the bifurcation point, the inhomogeneous equilib-
rium density profile can be written ρ(r) = ρ+ ε(r) where
ρ is the homogeneous solution and ε(r) 
 ρ. Substituting
this relation in equation (29) and expanding the equation
to first order in ε, we get

C′′(ρ)ε(r) = −β
∫
ε(r′)u(|r − r′|)dr′. (272)

In Fourier space, this relation becomes

C′′(ρ)ε̂(k) = βv̂(k)ε̂(k). (273)

This equation has a non-zero solution ε̂(k) �= 0 provided
that there exists a mode k = k∗ such that C′′(ρ) = βv̂(k∗).
This precisely corresponds to the condition T = Tc. There-
fore, stable stationary inhomogeneous solutions appear for
T < Tc precisely when the homogeneous phase becomes
unstable. For the BMF model [43], the stability analysis
can be carried out explicitly and we find that the phase
transition at T = Tc is second order. More generally, there
may exist other systems where inhomogeneous solutions
are stable for T > Tc. In that case, they are in “compe-
tition” with the homogeneous solution. One of these so-
lutions is stable (global minimum of free energy) and the
other metastable (local minimum of free energy). This is
usually associated with a first order phase transition.

Appendix D: Passage from F[f] to F[ρ]

We assume that the distribution function f(r,v, t) is given
by an expression of the form

C′(f) = −β
[
v2

2
+ λ(r, t)

]
. (274)

This expression appeared at several occasions in our anal-
ysis (see Sects. 4.3, 4.7, 4.8 and Appendix E). Since C is
convex, the foregoing relation can be reversed to give

f = F

[
β

(
v2

2
+ λ(r, t)

)]
, (275)

where F (x) = (C′)−1(−x). Since the distribution function
is isotropic, the local velocity vanishes: u = 0. The density
and the pressure are then given by

ρ =
∫
fdv = ρ[λ], p =

1
d

∫
fv2dv = p[λ]. (276)

The first relation determines λ(r, t) as a function of the
density ρ(r, t). Substituting equation (275) in Eq. (276),
we find that

ρ =
1

βd/2
g(βλ), p =

1

β
d+2
2

h(βλ), (277)

with

g(x) = 2
d−2
2 Sd

∫ +∞

0

F (x+ t) t
d−2
2 dt, (278)

h(x) =
1
d
2

d
2 Sd

∫ +∞

0

F (x+ t) t
d
2 dt, (279)

where Sd is the surface of a unit sphere in d dimensions.
Eliminating λ between the foregoing expressions, we find
that the fluid is barotropic, in the sense that p = p(ρ)
where the equation of state is entirely specified by C(f).
We can now express the free energy (166) as a functional
of ρ by writing F [ρ] ≡ F [f ]. The energy (162) is simply
given by

E =
d

2

∫
p dr +

1
2

∫
ρΦdr. (280)

On the other hand, the entropy (164) can be written

S = −2
d−2
2 Sd
βd/2

∫
dr

∫ +∞

0

C[F (t+ βλ)] t
d−2
2 dt. (281)

Integrating by parts and using C′[F (x)] = −x, we find
that

S = −2d/2Sd
dβd/2

∫
dr

∫ +∞

0

F ′(t+ βλ)(t + βλ)td/2dt.

(282)

Integrating by parts one more time and using equa-
tions (277), (278) and (279), we finally obtain

S =
d+ 2

2
β

∫
pdr + β

∫
λρdr. (283)
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Collecting all the previous results, the free energy (166)
becomes

F [ρ] = −
∫
ρ

(
λ+

p

ρ

)
dr +

1
2

∫
ρΦdr. (284)

Finally, using the relation h′(x) = −g(x) obtained from
equations (278) and (279) by a simple integration by parts,
it is easy to check that equation (277) implies

λ′(ρ) = −p
′(ρ)
ρ

, (285)

so that

λ+
p

ρ
= −

∫ ρ p(ρ′)
ρ′2

dρ′. (286)

Hence, the free energy can be written more explicitly as

F [ρ] =
∫
ρ

∫ ρ p(ρ′)
ρ′2

dρ′dr +
1
2

∫
ρΦdr. (287)

Appendix E: Equivalence between
the stability criteria of the generalized
Kramers and Smoluchowski equations

Let us consider the minimization problem (181). We want
to determine the distribution f∗(r,v) which minimizes the
free energy F [f ] at fixed mass M [f ] = M . To solve this
minimization problem, we can proceed in two steps. First
step: we determine the distribution f1(r,v) which mini-
mizes F [f ] at fixed density profile ρ(r) =

∫
fdv. This gives

a distribution f1[ρ(r),v] depending on ρ(r) and v. Substi-
tuting this distribution in the functional F [f ], we obtain
a functional F [ρ] ≡ F [f1] of the density. Second step: we
determine the density ρ∗(r) which minimizes F [ρ] at fixed
mass M [ρ] = M . Finally, we have f∗(r,v) = f1[ρ∗(r),v].

Let us be more explicit. If we fix the density profile
ρ(r), the potential energy W [ρ] is automatically deter-
mined. Therefore, minimizing F [f ] = E[f ] − TS[f ] at
fixed density profile is equivalent to minimizing F̃ [f ] =
K[f ] − TS[f ] at fixed density profile, where K[f ] is the
kinetic energy. The distribution f1(r,v) that extremizes
F̃ [f ] with the constraint

∫
f dv = ρ(r) satisfies the first

order variations δF +
∫
λ(r)δ(

∫
fdv)dr = 0, where λ(r) is

a Lagrange multiplier. This leads to

C′(f1) = −β
[
v2

2
+ λ(r)

]
, (288)

where λ(r) is related to ρ(r) by writing ρ =
∫
f1dv. Since

δ2F = −Tδ2S = 1
2T

∫
C′′(f1)(δf)2drdv ≥ 0 the distribu-

tion f1 is a minimum of F [f ] at fixed density profile. Now,
we remark that equation (288) has the form (274) so that
the functional F [ρ] ≡ F [f1] is explicitly given by

F [ρ] =
∫
ρ

∫ ρ p(ρ′)
ρ′2

dρ′dr +
1
2

∫
ρΦdr. (289)

Therefore, we conclude that f∗(r,v) = f1[ρ∗(r),v] is a
minimum of F [f ] at fixed mass iff ρ∗(r) is a minimum of
F [ρ] at fixed mass. Thus, the variational problems (181)
and (192) are equivalent for global minimization.

We shall now show that they are equivalent for local
minimization. A critical point of (181) is a local mini-
mum of F [f ] at fixed mass iff inequality (182) is satis-
fied for all perturbations δf that conserve mass. A critical
point of (192) is a local minimum of F [ρ] at fixed mass iff
inequality (193) is satisfied for all perturbations δρ that
conserve mass. In order to make the connection between
the second order variations (182) and (193), the idea is to
project the perturbation δf on a suitable space and write
δf = δf‖ + δf⊥ where δf⊥ is the orthogonal perturbation
(this is a relatively general method that has been applied
in different contexts; see [36,89,90]). We can always write
the perturbation in the form

δf = δf‖ + δf⊥ =
δρ∫

f ′(ε)dv
f ′(ε) + δf⊥, (290)

where δf⊥ ≡ δf − δf‖ ensures that all the perturba-
tions are considered. By construction, we have

∫
δfdv =∫

δf‖dv = δρ so that
∫
δf⊥dv = 0. Therefore, δf⊥ is or-

thogonal to δf‖ in the sense that
∫
δf‖δf⊥

1
f ′(ε)

dv ∝
∫
δf⊥dv = 0. (291)

Then, we readily obtain
∫

(δf)2

f ′(ε)
dv =

∫
(δf⊥)2

f ′(ε)
dv +

∫
(δf‖)2

f ′(ε)
dv

=
∫

(δf⊥)2

f ′(ε)
dv +

(δρ)2∫
f ′(ε)dv

. (292)

Now, a critical point of (181) is of the form f = f(ε)
with ε = v2/2 + Φ(r) and f ′(ε) < 0. This implies that
ρ =

∫
f(ε)dv = ρ(Φ) and ρ′(Φ) =

∫
f ′(ε)dv. Therefore,

equation (292) can be rewritten
∫

(δf)2

f ′(ε)
dv =

∫
(δf⊥)2

f ′(ε)
dv +

(δρ)2

ρ′(Φ)
. (293)

Combining equations (293), (182) and (193) we finally ob-
tain

δ2F [δf ] = −1
2

∫
(δf⊥)2

f ′(ε)
drdv + δ2F [δρ]. (294)

If δ2F [δρ] ≥ 0 for all perturbations δρ that conserve mass,
then δ2F [δf ] ≥ 0 for all perturbations δf that conserve
mass. Alternatively, if there exists a perturbation δρ∗ such
that δ2F [δρ∗] < 0, by taking δf∗ in the form (290) with
δρ = δρ∗ and δf⊥ = 0, we get δ2F [δf∗] = δ2F [δρ∗] < 0.
We conclude that f(r,v) is a local minimum of F [f ] at
fixed M iff ρ(r) is a local minimum of F [ρ] at fixed M .
Thus: (181) ⇔ (192) for local and global minimizations.

There are several consequences to this result (see also
the more detailed discussion in [90]):
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(i) We have seen that f is a linearly dynamically stable
steady state of the generalized Kramers equation (159)
iff it is a (local) minimum of F [f ] at fixed mass
M [f ] = M . On the other hand, we have seen that ρ is a
linearly dynamically stable steady state of the general-
ized Smoluchowski equation (44) iff it is a (local) min-
imum of F [ρ] at fixed mass M [ρ] = M . According to
the above-mentioned result (181) ⇔ (192), we conclude
that: f∗(r,v) = f1[ρ∗(r),v] is a linearly dynamically
stable steady state of the generalized Kramers equation
iff ρ∗(r) is a linearly dynamically stable steady state of
the generalized Smoluchowski equation.

(ii) It can be shown that a distribution function which
minimizes a functional of the form F [f ] = E[f ]−TS[f ]
(where T is a constant and S[f ] is given by equa-
tion (164) where C(f) is an arbitrary convex function)
at fixed mass M [f ] = M is a nonlinearly8 dynamically
stable stationary solution of the Vlasov equation (see,
e.g., the case of stellar systems [92]). Therefore, the
generalized mean field Kramers equation (159), which
precisely solves this minimization problem, can be used
as a numerical algorithm to construct nonlinearly dy-
namically stable stationary solutions of the Vlasov
equation. Indeed, if a distribution is linearly dynam-
ically stable with respect to the generalized Kramers
equation then it is nonlinearly dynamically stable with
respect to the Vlasov equation (but the converse may
be wrong, see below).

(iii) It can be shown that a density profile is a nonlin-
early dynamically stable stationary solution of the Eu-
ler equation with a barotropic equation of state iff it
minimizes a functional of the form F [ρ] (where F [ρ] is
given by Eq. (47)) at fixed mass M [ρ] = M (see, e.g.,
the case of barotropic stars [92]). Therefore, the gener-
alized mean field Smoluchowski equation (44), which
precisely solves this minimization problem, can be used
as a numerical algorithm to construct nonlinearly dy-
namically stable stationary solutions of the Euler equa-
tion. Indeed, a density profile is linearly dynamically
stable with respect to the generalized Smoluchowski
equation iff it is nonlinearly dynamically stable with
respect to the barotropic Euler equation.

(iv) According to the above mentioned results, a distri-
bution function f = f(ε) with f ′(ε) < 0 is a non-
linearly dynamically stable stationary solution of the
Vlasov equation if the corresponding barotropic gas
with equation of state p = p(ρ) is a nonlinearly dy-
namically stable stationary solution of the Euler equa-
tion. In astrophysics, this corresponds to the nonlin-
ear Antonov first law [92]. However, the minimization
of F [f ] = E[f ] − TS[f ] at fixed mass M [f ] = M
(problem with one constraint) is just a sufficient con-
dition of nonlinear dynamical stability with respect to
the Vlasov equation. Thus, this minimization problem
does not allow to construct all the nonlinearly dynam-
ically stable stationary solutions of the Vlasov equa-
tion. A larger class of nonlinearly dynamically sta-

8 We implicitly consider here the formal nonlinear dynamical
stability in the sense of Holm et al. [91].

ble stationary solutions is obtained by maximizing a
Casimir functional of the form S[f ] (where S[f ] is
given by Eq. (164)) at fixed mass M [f ] = M and en-
ergy E[f ] = E (problem with two constraints) [92]. A
numerical algorithm solving this maximization prob-
lem is proposed in [33]. In case of “ensemble inequiv-
alence”, these solutions cannot be obtained by mini-
mizing F [f ] = E[f ]− TS[f ] at fixed mass M [f ] = M .
Therefore, the problem with two constraints (“micro-
canonical”) provides a refined condition of nonlinear
dynamical stability with respect to the problem with
one constraint (“canonical”).

Appendix F: Extension of the Eddington
formula

In Section 4.7, we have seen that a distribution func-
tion f = f(ε) determines a barotropic equation of state
p = p(ρ) and we have explained how to obtain it (some
explicit examples have been given in Sect. 5). We shall
now consider the inverse problem: find the distribution
function f = f(ε) leading to the equation of state p(ρ).
This problem was first encountered in astrophysics and
solved by Eddington [93]. In astrophysics, a distribution
function of the form f = f(ε) describes a particular class
of spherical stellar systems that are stationary solutions
of the Vlasov-Poisson system. To any such stellar system,
we can associate a corresponding barotropic star with an
equation of state p = p(ρ) which is a stationary solution
of the Euler-Poisson system. The problem is to find the
equation of state p = p(ρ) corresponding to the distribu-
tion function f = f(ε) and vice et versa. A similar prob-
lem arises in the context of nonlinear mean field Fokker-
Planck equations. Thus, we can adapt many results of
astrophysics to the present situation. For sake of general-
ity, we shall consider the Eddington inverse problem in a
space of arbitrary dimension d.

Knowing the equation of state p = p(ρ), we can obtain
the equilibrium density ρ(Φ) by integrating the condition
of hydrostatic equilibrium (190). The problem now is to
determine f(ε) from the knowledge of ρ(Φ). Let us rewrite
the density in the form

ρ(Φ) =
∫ +∞

0

f(ε)Sdvd−1dv. (295)

We shall consider two cases:
(i) We first assume that the distribution function has

a compact support so that f = 0 if ε ≥ εm. In that case,
the range of integration in equation (295) is restricted to
v ≤ √

2(εm − Φ) so that

ρ(Φ) =
∫ √

2(εm−Φ)

0

f(ε)Sdvd−1dv. (296)

Taking ε = v2

2 + Φ as a variable of integration instead of
v we obtain

ρ(Φ) =
∫ εm

Φ

f(ε)Sd [2(ε− Φ)]
d−2
2 dε. (297)
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It is convenient at this stage to define ψ = εm − Φ and
x = εm − ε. In terms of these variables, we get

ρ(ψ) = 2
d−2
2 Sd

∫ ψ

0

f(x)(ψ − x)
d−2
2 dx. (298)

In d = 3, taking the derivative of equation (298) we find

1√
8π

dρ

dψ
=

∫ ψ

0

f(x)√
ψ − x

dx. (299)

This is an Abel integral whose solution is

f(x) =
1√
8π2

d

dx

∫ x

0

dρ

dψ

dψ√
x− ψ

=
1√
8π2

[∫ x

0

d2ρ

dψ2

dψ√
x− ψ

+
1√
x

(
dρ

dψ

)

ψ=0

]

.

(300)

This is the Eddington formula [93]. In d = 1, equa-
tion (298) becomes

1√
2
ρ(ψ) =

∫ ψ

0

f(x)√
ψ − x

dx. (301)

Comparing with the previous case, we immediately have

f(x) =
1√
2π

d

dx

∫ x

0

ρ(ψ)
dψ√
x− ψ

=
1√
2π

[∫ x

0

dρ

dψ

dψ√
x− ψ

+
1√
x
ρ(ψ = 0)

]
. (302)

Finally, in d = 2, equation (297) reduces to

ρ(Φ) = 2π
∫ εm

Φ

f(ε)dε, (303)

and we get the very simple result

f(ε) = − 1
2π

dρ

dΦ
(ε). (304)

(ii) We now consider the case where the distribution func-
tion takes strictly positive values for all energies so that
εm → +∞. Then equation (295) becomes

ρ(Φ) =
∫ +∞

Φ

f(ε)Sd [2(ε− Φ)]
d−2
2 dε. (305)

In d = 3, taking the derivative of equation (305) we obtain

− 1√
8π

dρ

dΦ
=

∫ +∞

Φ

f(ε)√
ε− Φ

dε. (306)

This is an Abel integral whose solution is

f(ε) =
1√
8π2

d

dε

∫ +∞

ε

dρ

dΦ

dΦ√
Φ− ε

=
1√
8π2

[∫ +∞

ε

d2ρ

dΦ2

dΦ√
Φ− ε

− lim
Φ→+∞

dρ
dΦ√
Φ− ε

]

.

(307)

In d = 1, equation (305) becomes

1√
2
ρ(Φ) =

∫ +∞

Φ

f(ε)√
ε− Φ

dε, (308)

and we get

f(ε) = − 1√
2π

d

dε

∫ +∞

ε

ρ(Φ)
dΦ√
Φ− ε

= − 1√
2π

[∫ +∞

ε

dρ

dΦ

dΦ√
Φ− ε

− lim
Φ→+∞

ρ√
Φ− ε

]
. (309)

For d = 2, equation (304) remains unchanged. For exam-
ple, the distribution function associated with the Fermi-
Dirac statistics in physical space

ρ(Φ) =
σ0

1 + eβΦ+α
, (310)

is

f(ε) =
σ0β

8π cosh2
[
1
2 (βε+ α)

] , (d = 2). (311)

Appendix G: Derivation of the H-theorems

Let us derive the H-theorem (24) for the NFP equa-
tion (8)–(2). The time variations of the entropy (21) and
of the energy (17) associated with an external potential
are

Ṡ = −
∫
C′(ρ)

∂ρ

∂t
dr, Ė =

∫
Φext

∂ρ

∂t
dr. (312)

On the other hand, using equations (18) and (2), the en-
ergy associated with a binary potential of interaction can
be written

E =
1
2

∫
ρ(r, t)u(|r − r′|)ρ(r′, t)drdr′. (313)

Its time derivative is

Ė =
1
2

∫
∂ρ

∂t
(r, t)u(|r − r′|)ρ(r′, t)drdr′

+
1
2

∫
ρ(r, t)u(|r − r′|)∂ρ

∂t
(r′, t)drdr′. (314)

Interchanging the dummy variables r and r′ and using
equation (2), we finally obtain

Ė =
∫
Φ
∂ρ

∂t
dr. (315)

Therefore, the time variation of the free energy (23) is
given by

Ḟ = Ė − T Ṡ =
∫

(Φ+ TC′(ρ))
∂ρ

∂t
dr. (316)
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Using equation (9) and integrating by parts, we obtain

Ḟ =
∫

J · (∇Φ+ TC′′(ρ)∇ρ)dr. (317)

Inserting equations (10), (20) and (22) in equation (317),
we finally obtain the H-theorem (24).

Let us derive the H-theorem (25) for the NFP equa-
tion (8)–(3). The time variation of the energy given by
equation (19) is

Ė =
1
λ

∫ (
∇Φ · ∇∂Φ

∂t
+ k2Φ

∂Φ

∂t

)
dr

+
∫
∂ρ

∂t
Φdr +

∫
ρ
∂Φ

∂t
dr. (318)

Integrating the first term by parts and using equation (3),
it can be rewritten

Ė = − 1
λε

∫
(∆Φ− k2Φ− λρ)2dr +

∫
∂ρ

∂t
Φdr. (319)

Inserting equation (8) and proceeding as above, we obtain
the H-theorem (25).

Consider now the generalized Smoluchowski equa-
tion (44). The time variation of the free energy (47) is

Ḟ =
∫ (

Φ+
∫ ρ p(ρ′)

ρ′2 dρ′dr +
p

ρ

)
∂ρ

∂t
dr. (320)

Inserting equation (44) in equation (320) and integrating
by parts we obtain the H-theorem (48).

Let us derive the H-theorem (168) for the NFP equa-
tion (159)–(2). The time variations of the entropy (164)
and of the energy (162) are

Ṡ = −
∫
C′(f)

∂f

∂t
drdv, Ė =

∫ (
v2

2
+ Φ

)
∂f

∂t
drdv.

(321)

For D = ξ = 0, the NFP equation (159)–(2) reduces to
the Vlasov equation. The Vlasov equation conserves the
energy and the Casimirs. Indeed, using integrations by
parts, we have

Ė =
∫ (

v2

2
+ Φ

) (
−v · ∂f

∂r
+ ∇Φ · ∂f

∂v

)
drdv

=
∫

(∇Φ · v − v · ∇Φ)fdrdv = 0, (322)

and

Ṡ = −
∫
C′(f)

(
−v · ∂f

∂r
+ ∇Φ · ∂f

∂v

)
drdv

=
∫ [

v · ∂C(f)
∂r

−∇Φ · ∂C(f)
∂v

]
drdv

=
∫ [

∂

∂r
· (C(f)v) − ∂

∂v
· (C(f)∇Φ)

]
drdv = 0.

(323)

Therefore, coming back to the NFP equation (159)-(2),
the only contribution to the time variation of the free en-
ergy (166) comes from the Fokker-Planck current. Using
equations (321) and (160), we have

Ḟ =
∫ (

v2

2
+ Φ+ TC′(f)

)
∂f

∂t
drdv

= −
∫ (

v2

2
+ Φ+ TC′(f)

)
· ∂J
∂v

drdv

=
∫ (

v + TC′′(f)
∂f

∂v

)
· Jdrdv. (324)

Inserting equations (161), (163) and (165) in equa-
tion (324) and integrating by parts we obtain the H-
theorem (168).

Let us finally derive the H-theorem (214) for the
damped Euler equations (211), (212) and (2). The time
variation of the free energy (213) is

Ḟ =
∫ (

Φ+
∫ ρ p(ρ′)

ρ′2 dρ′dr +
p

ρ
+

u2

2

)
∂ρ

∂t
dr

+
∫
ρu · ∂u

∂t
dr. (325)

Substituting equations (211) and (212) in equation (325)
and integrating by parts, we get

Ḟ =
∫
ρu ·

[
∇

(
u2

2

)
− ξu − (u · ∇)u

]
dr. (326)

Using (u · ∇)u = ∇(u2/2)−u× (∇×u) we finally obtain
the result (214).

Appendix H: Polytropic equation of state

For n > d/2 (case 1), the polytropic DF can we written

f = A(εm − ε)n−d/2+ . (327)

The density and the pressure can be expressed as

ρ = ASdQ0(Φ), p =
1
d
ASdQ2(Φ), (328)

with

Qk =
∫ √

2(εm−Φ)

0

(
εm − Φ− v2

2

)n−d/2
vk+d−1dv. (329)

Setting x = v2/[2(εm − Φ)], we obtain

Qk = 2(k+d−2)/2(εm − Φ)n+k/2

×
∫ 1

0

(1 − x)n−d/2x(k+d−2)/2dx. (330)

The integral can be expressed in terms of Gamma func-
tions leading to

Qk = 2(k+d−2)/2(εm − Φ)n+k/2

× Γ ((d+ k)/2)Γ (1 − d/2 + n)
Γ (1 + k/2 + n)

. (331)
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Then, the density and the pressure can be expressed in
terms of the potential Φ as

ρ = ASd(εm − Φ)n2d/2−1Γ (d/2)Γ (1 − d/2 + n)
Γ (1 + n)

, (332)

p =
ASd
n+ 1

(εm − Φ)n+12d/2−1Γ (d/2)Γ (1 − d/2 + n)
Γ (1 + n)

, (333)

where we have used the identity Γ (n+1) = nΓ (n) to sim-
plify the second expression. Eliminating the potential Φ
between these equations, we obtain the polytropic equa-
tion of state (231) with K given by equation (232).

For n < −1 (case 2), the polytropic DF can we written

f = A(εm + ε)n−d/2. (334)

The density and the pressure can be expressed as

ρ = ASdR0(Φ), p =
1
d
ASdR2(Φ), (335)

with

Rk =
∫ +∞

0

(
εm + Φ+

v2

2

)n−d/2
vk+d−1dv. (336)

Setting x = v2/[2(εm + Φ)], we obtain

Rk = 2(k+d−2)/2(εm + Φ)n+k/2

×
∫ +∞

0

(1 + x)n−d/2x(k+d−2)/2dx. (337)

The integral can be expressed in terms of Gamma func-
tions leading to

Rk = 2(k+d−2)/2(εm + Φ)n+k/2

× Γ ((d+ k)/2)Γ (−k/2− n)
Γ (d/2 − n)

. (338)

Then, the density and the pressure can be expressed in
terms of the potential Φ as

ρ = ASd(εm + Φ)n2d/2−1Γ (d/2)Γ (−n)
Γ (d/2 − n)

, (339)

p = − ASd
n+ 1

(εm + Φ)n+12d/2−1Γ (d/2)Γ (−n)
Γ (d/2 − n)

, (340)

where we have used the identity Γ (n+1) = nΓ (n) to sim-
plify the second expression. Eliminating the potential Φ
between these equations, we obtain the polytropic equa-
tion of state (231) with K given by equation (233).

Note, as a final remark, that spatially homogeneous
polytropic distributions are obtained by taking Φ(r) = 0
in the above expressions.
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